메뉴 건너뛰기




Volumn 271, Issue , 2015, Pages 1-17

The smallest semicopula-based universal integrals I: Properties and characterizations

Author keywords

Non additive set function; Semicopula; Seminormed fuzzy integral; Universal integral

Indexed keywords

ARTIFICIAL INTELLIGENCE;

EID: 84928214164     PISSN: 01650114     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.fss.2014.09.023     Document Type: Article
Times cited : (39)

References (27)
  • 1
    • 84856216650 scopus 로고    scopus 로고
    • On non-additive probabilistic inequalities of Hölder-type
    • H. Agahi, R. Mesiar, Y. Ouyang, E. Pap, and M. Štrboja On non-additive probabilistic inequalities of Hölder-type Results Math. 61 1-2 2012 179 194
    • (2012) Results Math. , vol.61 , Issue.12 , pp. 179-194
    • Agahi, H.1    Mesiar, R.2    Ouyang, Y.3    Pap, E.4    Štrboja, M.5
  • 3
    • 77953132329 scopus 로고    scopus 로고
    • General Hardy type inequality for seminormed fuzzy integrals
    • H. Agahi, and M.A. Yaghoobi General Hardy type inequality for seminormed fuzzy integrals Appl. Math. Comput. 216 7 2010 1972 1977
    • (2010) Appl. Math. Comput. , vol.216 , Issue.7 , pp. 1972-1977
    • Agahi, H.1    Yaghoobi, M.A.2
  • 4
    • 84928214762 scopus 로고    scopus 로고
    • The smallest semicopula-based universal integrals II: Convergence theorems
    • J. Borzová-Molnárová, L. Halčinová, and O. Hutník The smallest semicopula-based universal integrals II: convergence theorems Fuzzy Sets Syst. 271 2015 18 30
    • (2015) Fuzzy Sets Syst. , vol.271 , pp. 18-30
    • Borzová-Molnárová, J.1    Halčinová, L.2    Hutník, O.3
  • 5
    • 84879057631 scopus 로고    scopus 로고
    • A Markov-type inequality for seminormed fuzzy integrals
    • J. Caballero, and K. Sadarangani A Markov-type inequality for seminormed fuzzy integrals Appl. Math. Comput. 219 22 2013 10746 10752
    • (2013) Appl. Math. Comput. , vol.219 , Issue.22 , pp. 10746-10752
    • Caballero, J.1    Sadarangani, K.2
  • 6
    • 0040204702 scopus 로고    scopus 로고
    • Possibility and necessity integrals
    • G. de Cooman, and E.E. Kerre Possibility and necessity integrals Fuzzy Sets Syst. 77 1996 207 227
    • (1996) Fuzzy Sets Syst. , vol.77 , pp. 207-227
    • De Cooman, G.1    Kerre, E.E.2
  • 7
    • 77952556313 scopus 로고    scopus 로고
    • Componentwise concave copulas and their asymmetry
    • F. Durante, and P.L. Papini Componentwise concave copulas and their asymmetry Kybernetika 45 2009 1003 1011
    • (2009) Kybernetika , vol.45 , pp. 1003-1011
    • Durante, F.1    Papini, P.L.2
  • 8
    • 33847786753 scopus 로고    scopus 로고
    • Semicopulas: Characterizations and applicability
    • F. Durante, J. Quesada-Molina, and C. Sempi Semicopulas: characterizations and applicability Kybernetika 42 3 2006 287 302
    • (2006) Kybernetika , vol.42 , Issue.3 , pp. 287-302
    • Durante, F.1    Quesada-Molina, J.2    Sempi, C.3
  • 9
    • 84894902742 scopus 로고    scopus 로고
    • Monotone measures and universal integrals in a uniform framework for the scientific impact assessment problem
    • M. Gagolewski, and R. Mesiar Monotone measures and universal integrals in a uniform framework for the scientific impact assessment problem Inform. Sci. 263 2014 166 174
    • (2014) Inform. Sci. , vol.263 , pp. 166-174
    • Gagolewski, M.1    Mesiar, R.2
  • 10
    • 84901844645 scopus 로고    scopus 로고
    • Chebyshev type inequalities for general fuzzy integrals
    • Y. Hu Chebyshev type inequalities for general fuzzy integrals Inform. Sci. 278 2014 822 825
    • (2014) Inform. Sci. , vol.278 , pp. 822-825
    • Hu, Y.1
  • 11
    • 84928210278 scopus 로고    scopus 로고
    • Non-linearity of the seminormed fuzzy integral
    • M.H. Kim Non-linearity of the seminormed fuzzy integral J. Korea Contents Assoc. 2 2 2002 91 97
    • (2002) J. Korea Contents Assoc. , vol.2 , Issue.2 , pp. 91-97
    • Kim, M.H.1
  • 12
    • 27744567805 scopus 로고    scopus 로고
    • Homogeneity properties of seminormed fuzzy integrals
    • M.H. Kim Homogeneity properties of seminormed fuzzy integrals Fuzzy Sets Syst. 157 2006 411 426
    • (2006) Fuzzy Sets Syst. , vol.157 , pp. 411-426
    • Kim, M.H.1
  • 13
    • 76849090447 scopus 로고    scopus 로고
    • A universal integral as a common frame for Choquet and Sugeno integral
    • E.P. Klement, R. Mesiar, and E. Pap A universal integral as a common frame for Choquet and Sugeno integral IEEE Trans. Fuzzy Syst. 18 1 2010 178 187
    • (2010) IEEE Trans. Fuzzy Syst. , vol.18 , Issue.1 , pp. 178-187
    • Klement, E.P.1    Mesiar, R.2    Pap, E.3
  • 16
    • 16344372846 scopus 로고
    • Nonlinearity of the fuzzy integral
    • E.P. Klement, and D. Ralescu Nonlinearity of the fuzzy integral Fuzzy Sets Syst. 11 1983 309 315
    • (1983) Fuzzy Sets Syst. , vol.11 , pp. 309-315
    • Klement, E.P.1    Ralescu, D.2
  • 17
    • 84894032981 scopus 로고    scopus 로고
    • On the Jensen type inequality for generalized Sugeno integral
    • M. Kaluszka, A. Okolewski, and M. Boczek On the Jensen type inequality for generalized Sugeno integral Inform. Sci. 266 2014 140 147
    • (2014) Inform. Sci. , vol.266 , pp. 140-147
    • Kaluszka, M.1    Okolewski, A.2    Boczek, M.3
  • 18
    • 0040411738 scopus 로고
    • Possibility measures based integrals-theory and applications
    • G. de Cooman, D. Ruan, E.E. Kerre, World Scientific Singapore
    • R. Mesiar Possibility measures based integrals-theory and applications G. de Cooman, D. Ruan, E.E. Kerre, Foundations and Applications of Possibility Theory-Proceedings of FAPT95 1995 World Scientific Singapore 99 107
    • (1995) Foundations and Applications of Possibility Theory-Proceedings of FAPT95 , pp. 99-107
    • Mesiar, R.1
  • 20
    • 70349503871 scopus 로고    scopus 로고
    • On the Chebyshev type inequality for seminormed fuzzy integral
    • O. Ouyang, and R. Mesiar On the Chebyshev type inequality for seminormed fuzzy integral Appl. Math. Lett. 22 2009 1810 1815
    • (2009) Appl. Math. Lett. , vol.22 , pp. 1810-1815
    • Ouyang, O.1    Mesiar, R.2
  • 21
    • 0001677575 scopus 로고
    • Maxitive measure and integration
    • N. Shilkret Maxitive measure and integration Indag. Math. 33 1971 109 116
    • (1971) Indag. Math. , vol.33 , pp. 109-116
    • Shilkret, N.1
  • 25
    • 0012657561 scopus 로고
    • Two integrals and some modified versions: Critical remarks
    • S. Weber Two integrals and some modified versions: critical remarks Fuzzy Sets Syst. 20 1986 97 105
    • (1986) Fuzzy Sets Syst. , vol.20 , pp. 97-105
    • Weber, S.1
  • 26
    • 0003878202 scopus 로고
    • (N)fuzzy integral
    • (in Chinese)
    • R. Zhao (N)fuzzy integral J. Math. Res. Expo. 2 1981 57 72 (in Chinese)
    • (1981) J. Math. Res. Expo. , vol.2 , pp. 57-72
    • Zhao, R.1
  • 27
    • 43949170553 scopus 로고
    • Further discussion on convergence theorems for seminormed fuzzy integrals and semiconormed fuzzy integrals
    • L. Xuecheng Further discussion on convergence theorems for seminormed fuzzy integrals and semiconormed fuzzy integrals Fuzzy Sets Syst. 55 2 1993 219 226
    • (1993) Fuzzy Sets Syst. , vol.55 , Issue.2 , pp. 219-226
    • Xuecheng, L.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.