메뉴 건너뛰기




Volumn 63, Issue 2, 2015, Pages 119-133

Application of a two-stage fuzzy neural network to a prostate cancer prognosis system

Author keywords

Fuzzy neural network; Optimization version of an artificial immune network; Particle swarm optimization algorithm; Prognosis; Prostate cancer

Indexed keywords

ALGORITHMS; BENCHMARKING; CLUSTER ANALYSIS; DIAGNOSIS; FUNCTION EVALUATION; FUZZY NEURAL NETWORKS; MEMBERSHIP FUNCTIONS; NEURAL NETWORKS; OPTIMIZATION; PARTICLE SWARM OPTIMIZATION (PSO); UROLOGY;

EID: 84928206882     PISSN: 09333657     EISSN: 18732860     Source Type: Journal    
DOI: 10.1016/j.artmed.2014.12.008     Document Type: Article
Times cited : (39)

References (39)
  • 1
    • 34548410489 scopus 로고    scopus 로고
    • Neuro-fuzzy classification of prostate cancer using NEFCLASS-J
    • Keles A., Samet Hasiloglu A., Keles A., Aksoy Y. Neuro-fuzzy classification of prostate cancer using NEFCLASS-J. Comput Biol Med 2007, 37:1617-1628.
    • (2007) Comput Biol Med , vol.37 , pp. 1617-1628
    • Keles, A.1    Samet Hasiloglu, A.2    Keles, A.3    Aksoy, Y.4
  • 3
    • 33746862009 scopus 로고    scopus 로고
    • Neuro-fuzzy system for prostate cancer diagnosis
    • Benecchi L. Neuro-fuzzy system for prostate cancer diagnosis. Urology 2006, 68:357-361.
    • (2006) Urology , vol.68 , pp. 357-361
    • Benecchi, L.1
  • 4
    • 34548500577 scopus 로고    scopus 로고
    • Application areas of AIS: the past, the present and the future
    • Hart E., Timmis J. Application areas of AIS: the past, the present and the future. Appl Soft Comput 2008, 8:191-201.
    • (2008) Appl Soft Comput , vol.8 , pp. 191-201
    • Hart, E.1    Timmis, J.2
  • 5
    • 0035467993 scopus 로고    scopus 로고
    • Global cancer statistics in the year 2000
    • Parkin D.M. Global cancer statistics in the year 2000. Lancet Oncol 2001, 2:533-543.
    • (2001) Lancet Oncol , vol.2 , pp. 533-543
    • Parkin, D.M.1
  • 7
    • 80053578933 scopus 로고    scopus 로고
    • Prognosis of prostate cancer by artificial neural networks
    • Saritas I., Ozkan I.A., Sert I.U. Prognosis of prostate cancer by artificial neural networks. Expert Syst Appl 2010, 37:6646-6650.
    • (2010) Expert Syst Appl , vol.37 , pp. 6646-6650
    • Saritas, I.1    Ozkan, I.A.2    Sert, I.U.3
  • 8
    • 0027226031 scopus 로고
    • Detection of organ-confined prostate cancer is increased through prostate-specific antigen-based screening
    • Catalona W.J., Smith D.S., Ratliff T.L., Basler J.W. Detection of organ-confined prostate cancer is increased through prostate-specific antigen-based screening. JAMA 1993, 270:948-954.
    • (1993) JAMA , vol.270 , pp. 948-954
    • Catalona, W.J.1    Smith, D.S.2    Ratliff, T.L.3    Basler, J.W.4
  • 9
    • 58349121633 scopus 로고    scopus 로고
    • Early prostate cancer diagnosis by using artificial neural networks and support vector machines
    • Çinar M., Engin M., Engin E.Z., Ziya Ateşçi Y. Early prostate cancer diagnosis by using artificial neural networks and support vector machines. Expert Syst Appl 2009, 36:6357-6361.
    • (2009) Expert Syst Appl , vol.36 , pp. 6357-6361
    • Çinar, M.1    Engin, M.2    Engin, E.Z.3    Ziya Ateşçi, Y.4
  • 11
    • 0034187785 scopus 로고    scopus 로고
    • Neuro-fuzzy rule generation: survey in soft computing framework
    • Mitra S., Hayashi Y. Neuro-fuzzy rule generation: survey in soft computing framework. IEEE Trans Neural Netw 2000, 11:748-768.
    • (2000) IEEE Trans Neural Netw , vol.11 , pp. 748-768
    • Mitra, S.1    Hayashi, Y.2
  • 12
    • 34248666540 scopus 로고
    • Fuzzy sets
    • Zadeh L.A. Fuzzy sets. Inf Control 1965, 8:338-353.
    • (1965) Inf Control , vol.8 , pp. 338-353
    • Zadeh, L.A.1
  • 14
    • 0021892282 scopus 로고
    • Fuzzy identification of systems and its applications to modeling and control
    • Takagi T., Sugeno M. Fuzzy identification of systems and its applications to modeling and control. IEEE Trans Syst Man Cybern 1985, 116-132.
    • (1985) IEEE Trans Syst Man Cybern , pp. 116-132
    • Takagi, T.1    Sugeno, M.2
  • 15
    • 0026366218 scopus 로고
    • Neural-network-based fuzzy logic control and decision system
    • Lin C.-T., Lee C.S.G. Neural-network-based fuzzy logic control and decision system. IEEE Trans Comput 1991, 40:1320-1336.
    • (1991) IEEE Trans Comput , vol.40 , pp. 1320-1336
    • Lin, C.-T.1    Lee, C.S.G.2
  • 16
    • 0027601884 scopus 로고
    • ANFIS: adaptive-network-based fuzzy inference system
    • Jang J.-S. ANFIS: adaptive-network-based fuzzy inference system. IEEE Trans Syst Man Cybern 1993, 23:665-685.
    • (1993) IEEE Trans Syst Man Cybern , vol.23 , pp. 665-685
    • Jang, J.-S.1
  • 17
    • 59449090021 scopus 로고    scopus 로고
    • Identification using ANFIS with intelligent hybrid stable learning algorithm approaches
    • Shoorehdeli M.A., Teshnehlab M., Sedigh A.K. Identification using ANFIS with intelligent hybrid stable learning algorithm approaches. Neural Comput Appl 2009, 18:157-174.
    • (2009) Neural Comput Appl , vol.18 , pp. 157-174
    • Shoorehdeli, M.A.1    Teshnehlab, M.2    Sedigh, A.K.3
  • 18
    • 0346625199 scopus 로고    scopus 로고
    • Manufacturing process control through integration of neural networks and fuzzy model
    • Kuo R.J., Cohen P.H. Manufacturing process control through integration of neural networks and fuzzy model. Fuzzy Sets Syst 1998, 98:15-31.
    • (1998) Fuzzy Sets Syst , vol.98 , pp. 15-31
    • Kuo, R.J.1    Cohen, P.H.2
  • 19
    • 0029297062 scopus 로고
    • Structure optimization of fuzzy neural network by genetic algorithm
    • Ishigami H., Fukuda T., Shibata T., Arai F. Structure optimization of fuzzy neural network by genetic algorithm. Fuzzy Sets Syst 1995, 71:257-264.
    • (1995) Fuzzy Sets Syst , vol.71 , pp. 257-264
    • Ishigami, H.1    Fukuda, T.2    Shibata, T.3    Arai, F.4
  • 20
    • 0012076955 scopus 로고
    • Can fuzzy neural nets approximate continuous fuzzy functions?
    • Buckley J.J., Hayashi Y. Can fuzzy neural nets approximate continuous fuzzy functions?. Fuzzy Sets Syst 1994, 61:43-51.
    • (1994) Fuzzy Sets Syst , vol.61 , pp. 43-51
    • Buckley, J.J.1    Hayashi, Y.2
  • 21
    • 33750268081 scopus 로고    scopus 로고
    • A survey on analysis and design of model-based fuzzy control systems
    • Feng G. A survey on analysis and design of model-based fuzzy control systems. IEEE Trans Fuzzy Syst 2006, 14:676-697.
    • (2006) IEEE Trans Fuzzy Syst , vol.14 , pp. 676-697
    • Feng, G.1
  • 22
    • 0015956495 scopus 로고
    • Towards a network theory of the immune system
    • Jerne N.K. Towards a network theory of the immune system. Ann Immunol 1974, 125:373-389.
    • (1974) Ann Immunol , vol.125 , pp. 373-389
    • Jerne, N.K.1
  • 24
    • 84879015433 scopus 로고    scopus 로고
    • Parameter selection in particle swarm optimization
    • Springer, Berlin/Heidelberg, V.W. Porto, N. Saravanan, D. Waagen, A.E. Eiben (Eds.)
    • Shi Y., Eberhart R. Parameter selection in particle swarm optimization. Evolutionary programming VII 1998, 591-600. Springer, Berlin/Heidelberg. V.W. Porto, N. Saravanan, D. Waagen, A.E. Eiben (Eds.).
    • (1998) Evolutionary programming VII , pp. 591-600
    • Shi, Y.1    Eberhart, R.2
  • 28
    • 15244355266 scopus 로고    scopus 로고
    • Applying a hybrid approach based on fuzzy neural network and genetic algorithm to product form design
    • Hsiao S.-W., Tsai H.-C. Applying a hybrid approach based on fuzzy neural network and genetic algorithm to product form design. Int J Ind Ergon 2005, 35:411-428.
    • (2005) Int J Ind Ergon , vol.35 , pp. 411-428
    • Hsiao, S.-W.1    Tsai, H.-C.2
  • 29
    • 0033722932 scopus 로고    scopus 로고
    • A hybrid genetic fuzzy neural network algorithm designed for classification problems involving several groups
    • Östermark R. A hybrid genetic fuzzy neural network algorithm designed for classification problems involving several groups. Fuzzy Sets Syst 2000, 114:311-324.
    • (2000) Fuzzy Sets Syst , vol.114 , pp. 311-324
    • Östermark, R.1
  • 31
    • 63549133877 scopus 로고    scopus 로고
    • An efficient neural fuzzy network based on immune particle swarm optimization for prediction and control applications
    • Lin C., Liu Y., Lee C. An efficient neural fuzzy network based on immune particle swarm optimization for prediction and control applications. Int J Innov Comput Inf Control 2008, 4:1711-1722.
    • (2008) Int J Innov Comput Inf Control , vol.4 , pp. 1711-1722
    • Lin, C.1    Liu, Y.2    Lee, C.3
  • 32
    • 68149183581 scopus 로고    scopus 로고
    • A novel multi-epitopic immune network model hybridized with neural theory and fuzzy concept
    • Izadinia H., Sadeghi F., Ebadzadeh M.M. A novel multi-epitopic immune network model hybridized with neural theory and fuzzy concept. Neural Netw 2009, 22:633-641.
    • (2009) Neural Netw , vol.22 , pp. 633-641
    • Izadinia, H.1    Sadeghi, F.2    Ebadzadeh, M.M.3
  • 34
    • 78650977999 scopus 로고    scopus 로고
    • Ant colony optimization control for fuzzy neural network in freeway entrance ramp
    • Bao S., Lin C. Ant colony optimization control for fuzzy neural network in freeway entrance ramp. J Transp Inf Saf 2009, 5:173-176.
    • (2009) J Transp Inf Saf , vol.5 , pp. 173-176
    • Bao, S.1    Lin, C.2
  • 35
    • 84956763205 scopus 로고    scopus 로고
    • Integration of artificial immune network and K-means for cluster analysis
    • Kuo R.J., Chen S.S., Cheng W.C., Tsai C.Y. Integration of artificial immune network and K-means for cluster analysis. Knowl Inf Syst 2013, 1-17.
    • (2013) Knowl Inf Syst , pp. 1-17
    • Kuo, R.J.1    Chen, S.S.2    Cheng, W.C.3    Tsai, C.Y.4
  • 37
    • 0017714604 scopus 로고
    • Oscillation and chaos in physiological control systems
    • Mackey M.C., Glass L. Oscillation and chaos in physiological control systems. Science 1977, 197:287-289.
    • (1977) Science , vol.197 , pp. 287-289
    • Mackey, M.C.1    Glass, L.2
  • 38
    • 0035360372 scopus 로고    scopus 로고
    • Designing fuzzy inference systems from data: an interpretability-oriented review
    • Guillaume S. Designing fuzzy inference systems from data: an interpretability-oriented review. IEEE Trans Fuzzy Syst 2001, 9:426-443.
    • (2001) IEEE Trans Fuzzy Syst , vol.9 , pp. 426-443
    • Guillaume, S.1
  • 39
    • 52949088628 scopus 로고    scopus 로고
    • Low-level interpretability and high-level interpretability: a unified view of data-driven interpretable fuzzy system modelling
    • Zhou S.-M., Gan J.Q. Low-level interpretability and high-level interpretability: a unified view of data-driven interpretable fuzzy system modelling. Fuzzy Sets Syst 2008, 159:3091-3131.
    • (2008) Fuzzy Sets Syst , vol.159 , pp. 3091-3131
    • Zhou, S.-M.1    Gan, J.Q.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.