메뉴 건너뛰기




Volumn 114, Issue , 2015, Pages 189-201

Artificial neural networks for estimating the hydraulic performance of labyrinth-channel emitters

Author keywords

Artificial neural network; Emitter flow variation; Labyrinth emitter; Manufacturer's coefficient of variation

Indexed keywords

BACKPROPAGATION; ERRORS; HYPERBOLIC FUNCTIONS; LINEAR REGRESSION; MANUFACTURE; NEURAL NETWORKS; STATISTICAL TESTS; SUPPLY CHAINS; VALUE ENGINEERING;

EID: 84928169354     PISSN: 01681699     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.compag.2015.04.007     Document Type: Article
Times cited : (31)

References (48)
  • 1
    • 84905686356 scopus 로고    scopus 로고
    • Impact of water temperature and structural parameters on the hydraulic labyrinth-channel emitter performance
    • Alamoud A.I., Mattar M.A., Ateia M. Impact of water temperature and structural parameters on the hydraulic labyrinth-channel emitter performance. Span. J. Agric. Res. 2014, 12(2):580-593.
    • (2014) Span. J. Agric. Res. , vol.12 , Issue.2 , pp. 580-593
    • Alamoud, A.I.1    Mattar, M.A.2    Ateia, M.3
  • 2
    • 84857985004 scopus 로고    scopus 로고
    • Field assessment of friction head loss and friction correction factor equations
    • Alazba A.A., Mattar M.A., ElNesr M.N., Amin M.T. Field assessment of friction head loss and friction correction factor equations. J. Irrig. Drain. Eng., ASCE 2012, 138(2):166-176.
    • (2012) J. Irrig. Drain. Eng., ASCE , vol.138 , Issue.2 , pp. 166-176
    • Alazba, A.A.1    Mattar, M.A.2    ElNesr, M.N.3    Amin, M.T.4
  • 4
    • 0034174280 scopus 로고    scopus 로고
    • Artificial neural networks in hydrology. I: preliminary concepts
    • ASCE Task committee Artificial neural networks in hydrology. I: preliminary concepts. J. Hydrol. Eng., ASCE 2000, 5(2):115-123.
    • (2000) J. Hydrol. Eng., ASCE , vol.5 , Issue.2 , pp. 115-123
  • 5
    • 0019441694 scopus 로고
    • Manufacturing variation and drip irrigation uniformity
    • Bralts V.F., Wu I.P., Gitlin H.M. Manufacturing variation and drip irrigation uniformity. Trans. ASABE 1981, 24(1):113-119.
    • (1981) Trans. ASABE , vol.24 , Issue.1 , pp. 113-119
    • Bralts, V.F.1    Wu, I.P.2    Gitlin, H.M.3
  • 6
    • 0038240755 scopus 로고    scopus 로고
    • Estimation, forecasting and extrapolation of river flows by artificial neural networks
    • Cigizoglu H.K. Estimation, forecasting and extrapolation of river flows by artificial neural networks. Hydrol. Sci. J. 2003, 48(3):349-361.
    • (2003) Hydrol. Sci. J. , vol.48 , Issue.3 , pp. 349-361
    • Cigizoglu, H.K.1
  • 8
    • 0032005702 scopus 로고    scopus 로고
    • An artificial neural networks approach to rainfall-runoff modeling
    • Dawson W.C., Wilby R. An artificial neural networks approach to rainfall-runoff modeling. Hydrol. Sci. J. 1998, 43(1):47-66.
    • (1998) Hydrol. Sci. J. , vol.43 , Issue.1 , pp. 47-66
    • Dawson, W.C.1    Wilby, R.2
  • 9
    • 60549107629 scopus 로고    scopus 로고
    • Microirrigation systems
    • American Society of Agricultural and Biological Engineers Special Monograph, (Chapter 17)
    • Evans R.G., Wu I., Smajstrala A.G. Microirrigation systems. Design and Operation of Irrigation Systems 2007, 632-683. American Society of Agricultural and Biological Engineers Special Monograph, (Chapter 17). second ed.
    • (2007) Design and Operation of Irrigation Systems , pp. 632-683
    • Evans, R.G.1    Wu, I.2    Smajstrala, A.G.3
  • 10
    • 60649110244 scopus 로고    scopus 로고
    • Investigation of internal functioning of the radial-basis-function neural network river flow forecasting models
    • Fernando D.A.K., Shamseldin A.Y. Investigation of internal functioning of the radial-basis-function neural network river flow forecasting models. J. Hydrol. Eng., ASCE 2009, 14(3):286-292.
    • (2009) J. Hydrol. Eng., ASCE , vol.14 , Issue.3 , pp. 286-292
    • Fernando, D.A.K.1    Shamseldin, A.Y.2
  • 11
    • 8444249218 scopus 로고    scopus 로고
    • Evaluation of pedotransfer functions in predicting the soil water contents at field capacity and wilting point
    • Givi J., Prasher S.O., Patel R.M. Evaluation of pedotransfer functions in predicting the soil water contents at field capacity and wilting point. Agric. Water Manage. 2004, 70(2):83-96.
    • (2004) Agric. Water Manage. , vol.70 , Issue.2 , pp. 83-96
    • Givi, J.1    Prasher, S.O.2    Patel, R.M.3
  • 14
    • 77955713634 scopus 로고    scopus 로고
    • Neuro-Drip: estimation of subsurface wetting patterns for drip irrigation using neural networks
    • Hinnell A.C., Lazarovitch N., Furman A., Poulton M., Warrick A.W. Neuro-Drip: estimation of subsurface wetting patterns for drip irrigation using neural networks. Irri. Sci. 2009, 28(6):535-544.
    • (2009) Irri. Sci. , vol.28 , Issue.6 , pp. 535-544
    • Hinnell, A.C.1    Lazarovitch, N.2    Furman, A.3    Poulton, M.4    Warrick, A.W.5
  • 15
    • 2442639370 scopus 로고    scopus 로고
    • Development of effective and efficient rainfall-runoff models using integration of deterministic, real-coded genetic algorithms, and artificial neural network techniques
    • Jain A., Srinivasulu S. Development of effective and efficient rainfall-runoff models using integration of deterministic, real-coded genetic algorithms, and artificial neural network techniques. Water Resour. Res. 2004, 40(4):W04302.
    • (2004) Water Resour. Res. , vol.40 , Issue.4
    • Jain, A.1    Srinivasulu, S.2
  • 17
    • 85015530661 scopus 로고    scopus 로고
    • Evaluation of hydraulic performance of drip irrigation system
    • Kumar S., Singh P. Evaluation of hydraulic performance of drip irrigation system. J. Agric. Eng. 2007, 44(2):104-108.
    • (2007) J. Agric. Eng. , vol.44 , Issue.2 , pp. 104-108
    • Kumar, S.1    Singh, P.2
  • 19
    • 42049121124 scopus 로고    scopus 로고
    • Comparison of artificial neural network models and empirical and semi-empirical equations for daily reference evapotranspiration estimation in the Basque Country Northern Spain
    • Landeras G., Ortiz-Barredo A., López J.J. Comparison of artificial neural network models and empirical and semi-empirical equations for daily reference evapotranspiration estimation in the Basque Country Northern Spain. Agric. Water Manage. 2008, 95(5):553-565.
    • (2008) Agric. Water Manage. , vol.95 , Issue.5 , pp. 553-565
    • Landeras, G.1    Ortiz-Barredo, A.2    López, J.J.3
  • 20
    • 66449088932 scopus 로고    scopus 로고
    • Forecasting weekly evapotranspiration with ARIMA and artificial neural network Models
    • Landeras G., Ortiz-Barredo A., López J.J. Forecasting weekly evapotranspiration with ARIMA and artificial neural network Models. J. Irrig. Drain. Eng., ASCE 2009, 135(3):323-334.
    • (2009) J. Irrig. Drain. Eng., ASCE , vol.135 , Issue.3 , pp. 323-334
    • Landeras, G.1    Ortiz-Barredo, A.2    López, J.J.3
  • 21
    • 0032920124 scopus 로고    scopus 로고
    • Evaluating the use of ''goodness-of fit'' measures in hydrologic and hydroclimatic model validation
    • Legates D.R., McCabe G.J. Evaluating the use of ''goodness-of fit'' measures in hydrologic and hydroclimatic model validation. Water Resour. Res. 1999, 35(1):233-241.
    • (1999) Water Resour. Res. , vol.35 , Issue.1 , pp. 233-241
    • Legates, D.R.1    McCabe, G.J.2
  • 22
    • 0023834652 scopus 로고
    • Hydraulic performances of five different trickle irrigation emitters
    • Madramootoo C.A., Khatri K.C., Rigby M. Hydraulic performances of five different trickle irrigation emitters. Can. Agric. Eng. 1988, 30:1-4.
    • (1988) Can. Agric. Eng. , vol.30 , pp. 1-4
    • Madramootoo, C.A.1    Khatri, K.C.2    Rigby, M.3
  • 23
    • 0033957764 scopus 로고    scopus 로고
    • Neural networks for the prediction and forecasting of water resources variables: a review of modeling issues and application
    • Maier H.R., Dandy G.C. Neural networks for the prediction and forecasting of water resources variables: a review of modeling issues and application. Environ. Model. Software 2000, 15(1):101-124.
    • (2000) Environ. Model. Software , vol.15 , Issue.1 , pp. 101-124
    • Maier, H.R.1    Dandy, G.C.2
  • 25
    • 84908139902 scopus 로고    scopus 로고
    • Forecasting furrow irrigation infiltration using artificial neural networks
    • Mattar M.A., Alazba A.A., Zin El-Abedin T.K. Forecasting furrow irrigation infiltration using artificial neural networks. Agric. Water Manage. 2015, 148(1):63-71.
    • (2015) Agric. Water Manage. , vol.148 , Issue.1 , pp. 63-71
    • Mattar, M.A.1    Alazba, A.A.2    Zin El-Abedin, T.K.3
  • 26
    • 0024705436 scopus 로고
    • Emitter discharge evaluation of subsurface trickle irrigation
    • Mizyed N., Kruse E.G. Emitter discharge evaluation of subsurface trickle irrigation. Trans. ASABE 1989, 32(4):1223-1228.
    • (1989) Trans. ASABE , vol.32 , Issue.4 , pp. 1223-1228
    • Mizyed, N.1    Kruse, E.G.2
  • 30
    • 4244018092 scopus 로고    scopus 로고
    • Determination of hydraulic performances of in-line emitters
    • Özekici B., Bozkurt S. Determination of hydraulic performances of in-line emitters. Turk. J. Agric. Forest. 1999, 23(1):19-24.
    • (1999) Turk. J. Agric. Forest. , vol.23 , Issue.1 , pp. 19-24
    • Özekici, B.1    Bozkurt, S.2
  • 31
    • 5044252470 scopus 로고
    • Manufacturing variation for various trickle irrigation on-line emitter
    • Özekici B., Sneed R.E. Manufacturing variation for various trickle irrigation on-line emitter. Appl. Eng. Agric. 1995, 11(2):235-240.
    • (1995) Appl. Eng. Agric. , vol.11 , Issue.2 , pp. 235-240
    • Özekici, B.1    Sneed, R.E.2
  • 32
    • 27144533603 scopus 로고    scopus 로고
    • Artificial neural networks and multicriterion analysis for sustainable irrigation planning
    • Raju S.K., Kumar D.N., Duck L. Artificial neural networks and multicriterion analysis for sustainable irrigation planning. Comput. Oper. Res. 2006, 33:1138-1153.
    • (2006) Comput. Oper. Res. , vol.33 , pp. 1138-1153
    • Raju, S.K.1    Kumar, D.N.2    Duck, L.3
  • 35
    • 85015537100 scopus 로고    scopus 로고
    • Performance of subsurface drip irrigation system with line source of water application in okra field
    • Singh D.K., Rajput T.B.S., Singh D.K., Sikarwar H.S., Sahoo R.N., Ahmad T. Performance of subsurface drip irrigation system with line source of water application in okra field. J. Agric. Eng. 2006, 43(3):23-26.
    • (2006) J. Agric. Eng. , vol.43 , Issue.3 , pp. 23-26
    • Singh, D.K.1    Rajput, T.B.S.2    Singh, D.K.3    Sikarwar, H.S.4    Sahoo, R.N.5    Ahmad, T.6
  • 37
    • 0031898654 scopus 로고    scopus 로고
    • River stage forecasting using artificial neural networks
    • Thirumalaiah K., Deo M.C. River stage forecasting using artificial neural networks. J. Hydrol. Eng., ASCE 1998, 3(1):26-32.
    • (1998) J. Hydrol. Eng., ASCE , vol.3 , Issue.1 , pp. 26-32
    • Thirumalaiah, K.1    Deo, M.C.2
  • 38
    • 85015515194 scopus 로고    scopus 로고
    • Hydraulic performance of drip irrigation system with municipal wastewater
    • Tripathi V.K., Rajput T.B.S., Patel N., Lata Hydraulic performance of drip irrigation system with municipal wastewater. J. Agric. Eng. 2011, 48(2):15-22.
    • (2011) J. Agric. Eng. , vol.48 , Issue.2 , pp. 15-22
    • Tripathi, V.K.1    Rajput, T.B.S.2    Patel, N.3    Lata4
  • 39
    • 37249009694 scopus 로고    scopus 로고
    • Using groundwater artificial neural network models for adaptive water supply management
    • 40792
    • Wanakule, N., Aly, A., 2005. Using groundwater artificial neural network models for adaptive water supply management. In: Proc., Impacts of Global Climate Change, ASCE, Reston, Va., 173(40792), 89.
    • (2005) Proc., Impacts of Global Climate Change, ASCE, Reston, Va. , vol.173 , pp. 89
    • Wanakule, N.1    Aly, A.2
  • 40
    • 34548677334 scopus 로고    scopus 로고
    • Rapid structural design of drip irrigation emitters based on RP technology
    • Wei Z., Tang Y., Zhao W., Lu B. Rapid structural design of drip irrigation emitters based on RP technology. Rapid. Prototyping J. 2007, 13(5):268-275.
    • (2007) Rapid. Prototyping J. , vol.13 , Issue.5 , pp. 268-275
    • Wei, Z.1    Tang, Y.2    Zhao, W.3    Lu, B.4
  • 41
    • 0020633898 scopus 로고
    • Drip irrigation application efficiency and schedules
    • Wu I.P., Gitlin H.M. Drip irrigation application efficiency and schedules. Trans. ASABE 1983, 28:92-99.
    • (1983) Trans. ASABE , vol.28 , pp. 92-99
    • Wu, I.P.1    Gitlin, H.M.2
  • 42
    • 33947362356 scopus 로고    scopus 로고
    • Estimating evapotranspiration using artificial neural network and minimum climatological data
    • Zanetti S.S., Sousa E.F., Oliveira V.P.S. Estimating evapotranspiration using artificial neural network and minimum climatological data. J. Irrig. Drain. Eng., ASCE 2007, 133(2):83-89.
    • (2007) J. Irrig. Drain. Eng., ASCE , vol.133 , Issue.2 , pp. 83-89
    • Zanetti, S.S.1    Sousa, E.F.2    Oliveira, V.P.S.3
  • 44
    • 33947241261 scopus 로고    scopus 로고
    • Numerical and experimental study on hydraulic performance of emitters with arc labyrinth channels
    • Zhang J., Zhao W., Wei Z., Tang Y., Lu B. Numerical and experimental study on hydraulic performance of emitters with arc labyrinth channels. Comput. Electron. Agric. 2007, 56(2):120-129.
    • (2007) Comput. Electron. Agric. , vol.56 , Issue.2 , pp. 120-129
    • Zhang, J.1    Zhao, W.2    Wei, Z.3    Tang, Y.4    Lu, B.5
  • 45
    • 80051672005 scopus 로고    scopus 로고
    • Structural optimization of labyrinth-channel emitters based on hydraulic and anti-clogging performances
    • Zhang J., Zhao W., Tang Y., Lu B. Structural optimization of labyrinth-channel emitters based on hydraulic and anti-clogging performances. Irri. Sci. 2011, 29(5):351-357.
    • (2011) Irri. Sci. , vol.29 , Issue.5 , pp. 351-357
    • Zhang, J.1    Zhao, W.2    Tang, Y.3    Lu, B.4
  • 46
    • 84862973782 scopus 로고    scopus 로고
    • New method of hydraulic performance evaluation on emitters with labyrinth channels
    • Zhang J., Zhao W., Lu B. New method of hydraulic performance evaluation on emitters with labyrinth channels. J. Irrig. Drain. Eng., ASCE 2011, 137(12):811-815.
    • (2011) J. Irrig. Drain. Eng., ASCE , vol.137 , Issue.12 , pp. 811-815
    • Zhang, J.1    Zhao, W.2    Lu, B.3
  • 47
    • 84905711163 scopus 로고    scopus 로고
    • IFIP International Federation for Information Processing
    • Springer, Boston, D. Li, Z. Chunjiang (Eds.)
    • Zhao W., Zhang J., Tang Y., Wei Z., Lu B. IFIP International Federation for Information Processing. Computer and Computing Technologies in Agriculture II 2009, vol. 2:881-890. Springer, Boston. D. Li, Z. Chunjiang (Eds.).
    • (2009) Computer and Computing Technologies in Agriculture II , vol.2 , pp. 881-890
    • Zhao, W.1    Zhang, J.2    Tang, Y.3    Wei, Z.4    Lu, B.5
  • 48
    • 84928165042 scopus 로고    scopus 로고
    • The influence of the sectional form of labyrinth emitter on the hydraulic properties
    • Springer-Verlag Berlin Heidelberg, H. Deng (Ed.)
    • Zhiqin L., Lin L. The influence of the sectional form of labyrinth emitter on the hydraulic properties. AICI 2011, CCIS 237 2011, 499-505. Springer-Verlag Berlin Heidelberg. H. Deng (Ed.).
    • (2011) AICI 2011, CCIS 237 , pp. 499-505
    • Zhiqin, L.1    Lin, L.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.