메뉴 건너뛰기




Volumn 80, Issue , 2015, Pages 79-89

Exploration of sequential streamflow assimilation in snow dominated watersheds

Author keywords

Ensemble forecast; Ensemble Kalman filter; Performance; Reliability; Semi distributed hydrological model; Snow accumulation and melt

Indexed keywords

CLIMATE MODELS; HYDROLOGY; KALMAN FILTERS; MOISTURE; RELIABILITY; RESERVOIRS (WATER); SOIL MOISTURE; STREAM FLOW; WATERSHEDS;

EID: 84928137520     PISSN: 03091708     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.advwatres.2015.03.011     Document Type: Article
Times cited : (12)

References (41)
  • 1
    • 84884913306 scopus 로고    scopus 로고
    • A comparison of the Canadian global and regional meteorological ensemble prediction systems for short-term hydrological forecasting
    • Abaza M., Anctil F., Fortin V., Turcotte R. A comparison of the Canadian global and regional meteorological ensemble prediction systems for short-term hydrological forecasting. Mon Weather Rev 2013, 141:3462-3476. 10.1175/MWR-D-12-00206.1.
    • (2013) Mon Weather Rev , vol.141 , pp. 3462-3476
    • Abaza, M.1    Anctil, F.2    Fortin, V.3    Turcotte, R.4
  • 2
    • 84919880460 scopus 로고    scopus 로고
    • Sequential streamflow assimilation for short-term hydrological ensemble forecasting
    • Abaza M., Anctil F., Fortin V., Turcotte R. Sequential streamflow assimilation for short-term hydrological ensemble forecasting. J Hydrol 2014, 519:2692-2706. 10.1016/j.jhydrol.2014.08.038.
    • (2014) J Hydrol , vol.519 , pp. 2692-2706
    • Abaza, M.1    Anctil, F.2    Fortin, V.3    Turcotte, R.4
  • 3
    • 0035655814 scopus 로고    scopus 로고
    • An ensemble adjustment Kalman filter for data assimilation
    • Anderson J.L. An ensemble adjustment Kalman filter for data assimilation. Mon Weather Rev 2001, 129:2884-2903. 10.1175/1520-0493(2001)129<2884:AEAKFF>2.0.CO;2.
    • (2001) Mon Weather Rev , vol.129 , pp. 2884-2903
    • Anderson, J.L.1
  • 4
    • 33645875289 scopus 로고    scopus 로고
    • Assimilating remotely sensed snow observations into a macroscale hydrology model
    • Andreadis K.M., Lettenmaier D.P. Assimilating remotely sensed snow observations into a macroscale hydrology model. Adv Water Resour 2006, 29:872-886. 10.1016/j.advwatres.2005.08.004.
    • (2006) Adv Water Resour , vol.29 , pp. 872-886
    • Andreadis, K.M.1    Lettenmaier, D.P.2
  • 6
    • 84880544136 scopus 로고    scopus 로고
    • Simplifying a hydrological ensemble prediction system with a backward greedy selection of members - Part 1: optimization criteria
    • Brochero D., Anctil F., Gagné C. Simplifying a hydrological ensemble prediction system with a backward greedy selection of members - Part 1: optimization criteria. Hydrol Earth Syst Sci 2011, 8:2739-2782. 10.5194/hess-15-3307-2011.
    • (2011) Hydrol Earth Syst Sci , vol.8 , pp. 2739-2782
    • Brochero, D.1    Anctil, F.2    Gagné, C.3
  • 7
    • 0032439201 scopus 로고    scopus 로고
    • Analysis scheme in the ensemble Kalman filter
    • Burgers G., Van Leeuwen P.J., Evensen G. Analysis scheme in the ensemble Kalman filter. Mon Weather Rev 1998, 126:1719-1724. 10.1175/1520-0493(1998)126<1719:ASITEK>2.0.CO;2.
    • (1998) Mon Weather Rev , vol.126 , pp. 1719-1724
    • Burgers, G.1    Van Leeuwen, P.J.2    Evensen, G.3
  • 8
    • 27644571998 scopus 로고    scopus 로고
    • Evaluation of probabilistic prediction systems for a scalar variable
    • Candille G., Talagrand O. Evaluation of probabilistic prediction systems for a scalar variable. Q J R Meteorolog Soc 2005, 131:2131-2150. 10.1256/qj.04.71.
    • (2005) Q J R Meteorolog Soc , vol.131 , pp. 2131-2150
    • Candille, G.1    Talagrand, O.2
  • 11
    • 51349114551 scopus 로고    scopus 로고
    • Hydrological data assimilation with the ensemble Kalman filter: use of streamflow observations to update states in a distributed hydrological model
    • Clark M.P., Rupp D.E., Woods R.A., Zheng X., Ibbitt R.P., Slater A.G., Schmidt J., Uddstrom M.J. Hydrological data assimilation with the ensemble Kalman filter: use of streamflow observations to update states in a distributed hydrological model. Adv Water Res 2008, 31:1309-1324. 10.1016/j.advwatres.2008.06.005.
    • (2008) Adv Water Res , vol.31 , pp. 1309-1324
    • Clark, M.P.1    Rupp, D.E.2    Woods, R.A.3    Zheng, X.4    Ibbitt, R.P.5    Slater, A.G.6    Schmidt, J.7    Uddstrom, M.J.8
  • 12
    • 81355139449 scopus 로고    scopus 로고
    • Improving the characterization of initial condition for ensemble streamflow prediction using data assimilation
    • DeChant C., Moradkhani H. Improving the characterization of initial condition for ensemble streamflow prediction using data assimilation. Hydrol Earth Syst Sci 2011, 15:3399-3410. 10.5194/hess-15-3399-2011.
    • (2011) Hydrol Earth Syst Sci , vol.15 , pp. 3399-3410
    • DeChant, C.1    Moradkhani, H.2
  • 13
    • 84858807931 scopus 로고    scopus 로고
    • Examining the effectiveness and robustness of sequential data assimilation methods for quantification of uncertainty in hydrologic forecasting
    • Dechant C.M., Moradkhani H. Examining the effectiveness and robustness of sequential data assimilation methods for quantification of uncertainty in hydrologic forecasting. Water Resour Res 2012, 48(4):W04518. 10.1029/2011WR011011.
    • (2012) Water Resour Res , vol.48 , Issue.4 , pp. W04518
    • Dechant, C.M.1    Moradkhani, H.2
  • 14
    • 0028193070 scopus 로고
    • Sequential data assimilation with a nonlinear quasigeostrophic model using monte-carlo methods to forecast error statistics
    • Evensen G. Sequential data assimilation with a nonlinear quasigeostrophic model using monte-carlo methods to forecast error statistics. J Geophys Res Oceans 1994, 99:10143-10162. 10.1029/94JC00572.
    • (1994) J Geophys Res Oceans , vol.99 , pp. 10143-10162
    • Evensen, G.1
  • 15
    • 0031166563 scopus 로고    scopus 로고
    • Advanced data assimilation for strongly nonlinear dynamics
    • Evensen G. Advanced data assimilation for strongly nonlinear dynamics. Mon Weather Rev 1997, 125:1342-1354. 10.1175/1520-0493(1997)125,1342:ADAFSN.2.0.CO;2.
    • (1997) Mon Weather Rev , vol.125 , pp. 1342-1354
    • Evensen, G.1
  • 16
    • 84884550570 scopus 로고    scopus 로고
    • The ensemble Kalman filter: theoretical formulation and practical implementation
    • Evensen G. The ensemble Kalman filter: theoretical formulation and practical implementation. Ocean Dyn 2003, 53:343-367. 10.1007/s10236-003-0036-9.
    • (2003) Ocean Dyn , vol.53 , pp. 343-367
    • Evensen, G.1
  • 17
    • 84865495165 scopus 로고    scopus 로고
    • Hydrologic data assimilation with a hillslope-scale-resolving model and L band radar observations: synthetic experiments with the ensemble Kalman filter
    • Flores A.N., Bras R.L., Entekhabi D. Hydrologic data assimilation with a hillslope-scale-resolving model and L band radar observations: synthetic experiments with the ensemble Kalman filter. Water Resour Res 2012, 48:W08509. 10.1029/2011WR011500.
    • (2012) Water Resour Res , vol.48 , pp. W08509
    • Flores, A.N.1    Bras, R.L.2    Entekhabi, D.3
  • 18
    • 0029413142 scopus 로고
    • Hydrotel, un modèle hydrologique distribué pouvant bénéficier des données fournies par la télédétection et les systèmes d'information géographique
    • Fortin J.P., Moussa R., Bocquillon C., Villeneuve J.P. Hydrotel, un modèle hydrologique distribué pouvant bénéficier des données fournies par la télédétection et les systèmes d'information géographique. Water Sci Rev 1995, 8:97-124. 10.7202/705215ar.
    • (1995) Water Sci Rev , vol.8 , pp. 97-124
    • Fortin, J.P.1    Moussa, R.2    Bocquillon, C.3    Villeneuve, J.P.4
  • 19
    • 0035282496 scopus 로고    scopus 로고
    • A distributed watershed model compatible with remote sensing and GIS data, part i: description of the model
    • Fortin J.P., Turcotte R., Massicotte S., Moussa R., Fitzback J. A distributed watershed model compatible with remote sensing and GIS data, part i: description of the model. J Hydrol Eng - Am Soc Civ Eng 2001, 6(2):91-99. 10.1061/(ASCE)1084-0699(2001)6:2(91).
    • (2001) J Hydrol Eng - Am Soc Civ Eng , vol.6 , Issue.2 , pp. 91-99
    • Fortin, J.P.1    Turcotte, R.2    Massicotte, S.3    Moussa, R.4    Fitzback, J.5
  • 20
    • 84919914244 scopus 로고    scopus 로고
    • Why should ensemble spread match the RMSE of the ensemble mean?
    • Fortin V., Abaza M., Anctil F., Turcotte R. Why should ensemble spread match the RMSE of the ensemble mean?. J Hydrometeorol 2014, 15:1708-1713. 10.1175/JHM-D-14-0008.1.
    • (2014) J Hydrometeorol , vol.15 , pp. 1708-1713
    • Fortin, V.1    Abaza, M.2    Anctil, F.3    Turcotte, R.4
  • 21
    • 85067744395 scopus 로고    scopus 로고
    • Coauthors. Improvements to the Global Ensemble Prediction System (GEPS) from version 2.0.3 to version 3.0.0. Tech. Note, Environment Canada
    • Gagnon N, Coauthors. Improvements to the Global Ensemble Prediction System (GEPS) from version 2.0.3 to version 3.0.0. Tech. Note, Environment Canada 2013: p. 88. <>. http://collaboration.cmc.ec.gc.ca/cmc/cmoi/product_guide/docs/lib/op_systems/doc_opchanges/technote_geps300_20130213_e.pdf.
    • (2013) , pp. 88
    • Gagnon, N.1
  • 23
    • 33947274775 scopus 로고    scopus 로고
    • Strictly proper scoring rules, prediction, and estimation
    • Gneiting T., Raftery A.E. Strictly proper scoring rules, prediction, and estimation. J Am Stat Assoc 2007, 102:359-378. 10.1198/016214506000001437.
    • (2007) J Am Stat Assoc , vol.102 , pp. 359-378
    • Gneiting, T.1    Raftery, A.E.2
  • 24
    • 0034292468 scopus 로고    scopus 로고
    • Decomposition of the continuous ranked probability score for ensemble prediction systems
    • Hersbach H. Decomposition of the continuous ranked probability score for ensemble prediction systems. Weather Forecasting 2000, 15(5):559-570. 10.1175/1520-0434(2000)015<0559:DOTCRP>2.0.CO;2.
    • (2000) Weather Forecasting , vol.15 , Issue.5 , pp. 559-570
    • Hersbach, H.1
  • 25
    • 85024429815 scopus 로고
    • A new approach to linear filtering and prediction problem
    • Kalman R.E. A new approach to linear filtering and prediction problem. J Basic Eng 1960, 82D:35-45. 10.1115/1.3662552.
    • (1960) J Basic Eng , vol.82D , pp. 35-45
    • Kalman, R.E.1
  • 26
    • 36648998731 scopus 로고    scopus 로고
    • Uncertainty in hydrologic modeling: toward an integrated data assimilation framework
    • Liu Y., Gupta H.V. Uncertainty in hydrologic modeling: toward an integrated data assimilation framework. Water Resour Res 2007, 43:1-18. 10.1029/2006WR005756.
    • (2007) Water Resour Res , vol.43 , pp. 1-18
    • Liu, Y.1    Gupta, H.V.2
  • 28
    • 58049149494 scopus 로고    scopus 로고
    • Efficient implementation of the ensemble Kalman filter
    • (CCM Report 231, University of Colorado at Denver and Health Sciences Center)
    • Mandel J. Efficient implementation of the ensemble Kalman filter (CCM Report 231, University of Colorado at Denver and Health Sciences Center); 2006.
    • (2006)
    • Mandel, J.1
  • 30
    • 11944268965 scopus 로고    scopus 로고
    • Dual state parameter estimation of hydrologic models using ensemble Kalman filter
    • Moradkhani H., Sorooshian S., Gupta H.V., Houser P. Dual state parameter estimation of hydrologic models using ensemble Kalman filter. Adv Water Resour 2005, 28:135-147. 10.1016/j.advwatres.2004.09.002.
    • (2005) Adv Water Resour , vol.28 , pp. 135-147
    • Moradkhani, H.1    Sorooshian, S.2    Gupta, H.V.3    Houser, P.4
  • 31
    • 0014776873 scopus 로고
    • River flow forecasting through conceptual models: part I-a discussion of principles
    • Nash J.E., Sutcliffe J.V. River flow forecasting through conceptual models: part I-a discussion of principles. J Hydrol 1970, 10:282-290. 10.1016/0022-1694(70)90255-6.
    • (1970) J Hydrol , vol.10 , pp. 282-290
    • Nash, J.E.1    Sutcliffe, J.V.2
  • 32
    • 84869413754 scopus 로고    scopus 로고
    • State updating of a distributed hydrological model with ensemble Kalman filtering: effects of updating frequency and observation network density on forecast accuracy
    • Rakovec O., Weerts A.H., Hazenberg P., Torfs P.J.J.F., Uijlenhoet R. State updating of a distributed hydrological model with ensemble Kalman filtering: effects of updating frequency and observation network density on forecast accuracy. Hydrol Earth Syst Sci 2012, 16(9):3435-3449. 10.5194/hess-16-3435-2012.
    • (2012) Hydrol Earth Syst Sci , vol.16 , Issue.9 , pp. 3435-3449
    • Rakovec, O.1    Weerts, A.H.2    Hazenberg, P.3    Torfs, P.J.J.F.4    Uijlenhoet, R.5
  • 33
    • 54949158157 scopus 로고    scopus 로고
    • Data assimilation methods in the Earth sciences
    • Reichle R.H. Data assimilation methods in the Earth sciences. Adv Water Resour 2008, 31:1411-1418. 10.1016/j.advwatres.2008.01.001.
    • (2008) Adv Water Resour , vol.31 , pp. 1411-1418
    • Reichle, R.H.1
  • 34
    • 0042092515 scopus 로고    scopus 로고
    • Real-time variational assimilation of hydrologic and hydrometeorological data into operational hydrologic forecasting
    • Seo D.J., Koren V., Cajina N. Real-time variational assimilation of hydrologic and hydrometeorological data into operational hydrologic forecasting. J Hydrometeorol 2003, 4(3):627-641. 10.1175/1525-7541(2003)004<0627:RVAOHA>2.0.CO;2.
    • (2003) J Hydrometeorol , vol.4 , Issue.3 , pp. 627-641
    • Seo, D.J.1    Koren, V.2    Cajina, N.3
  • 35
    • 61849087900 scopus 로고    scopus 로고
    • Automatic state updating for operational streamflow forecasting via variational data assimilation
    • Seo D.J., Cajina L., Corby R., Howieson T. Automatic state updating for operational streamflow forecasting via variational data assimilation. J Hydrol 2009, 367(3-4):255-275. 10.1016/j.jhydrol.2009.01.019.
    • (2009) J Hydrol , vol.367 , Issue.3-4 , pp. 255-275
    • Seo, D.J.1    Cajina, L.2    Corby, R.3    Howieson, T.4
  • 37
    • 3242748956 scopus 로고    scopus 로고
    • Prévision hydrologique distribuée pour la gestion des barrages publics du Québec
    • Turcotte R., Lacombe P., Dimnik C., Villeneuve J.P. Prévision hydrologique distribuée pour la gestion des barrages publics du Québec. Revue canadienne de génie civil 2004, 31(2):308-320. 10.1139/l04-011.
    • (2004) Revue canadienne de génie civil , vol.31 , Issue.2 , pp. 308-320
    • Turcotte, R.1    Lacombe, P.2    Dimnik, C.3    Villeneuve, J.P.4
  • 38
    • 2942711688 scopus 로고    scopus 로고
    • A representer-based inverse method for groundwater flow and transport applications
    • Valstar J.R., McLaughlin D.B., Stroet C.M.B.T, Van Geer F.C. A representer-based inverse method for groundwater flow and transport applications. Water Resour Res 2004, 40:W05116. 10.1029/2003WR002922.
    • (2004) Water Resour Res , vol.40 , pp. W05116
    • Valstar, J.R.1    McLaughlin, D.B.2    Stroet, C.M.B.T.3    Van Geer, F.C.4
  • 39
    • 14944365603 scopus 로고    scopus 로고
    • Improved treatment of uncertainty in hydrologic modeling: combining the strengths of global optimization and data assimilation
    • Vrugt J.A., Diks C.G.H., Gupta H.V., Bouten W., Verstraten J.M. Improved treatment of uncertainty in hydrologic modeling: combining the strengths of global optimization and data assimilation. Water Resour Res 2005, 41:W01017. 10.1029/2004WR003059.
    • (2005) Water Resour Res , vol.41 , pp. W01017
    • Vrugt, J.A.1    Diks, C.G.H.2    Gupta, H.V.3    Bouten, W.4    Verstraten, J.M.5
  • 40
    • 33750368306 scopus 로고    scopus 로고
    • Particle filtering and ensemble Kalman filtering for state updating with hydrological conceptual rainfall-runoff models
    • Weerts A.H., El Serafy G.Y.H. Particle filtering and ensemble Kalman filtering for state updating with hydrological conceptual rainfall-runoff models. Water Resour Res 2006, 42:W09403. 10.1029/2005WR004093.
    • (2006) Water Resour Res , vol.42 , pp. W09403
    • Weerts, A.H.1    El Serafy, G.Y.H.2
  • 41
    • 65349175765 scopus 로고    scopus 로고
    • Forward-looking assimilation of MODIS-derived snow-covered area into a land surface model
    • Zaitchik B.F., Rodell M. Forward-looking assimilation of MODIS-derived snow-covered area into a land surface model. J Hydrometeorol 2009, 10:130-148. 10.1175/2008jhm1042.1.
    • (2009) J Hydrometeorol , vol.10 , pp. 130-148
    • Zaitchik, B.F.1    Rodell, M.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.