-
1
-
-
0000176592
-
Semisimple subalgebras of semisimple Lie algebras
-
E. Dynkin Semisimple subalgebras of semisimple Lie algebras Trans. Amer. Math. Soc. 6 1957 111
-
(1957)
Trans. Amer. Math. Soc.
, vol.6
, pp. 111
-
-
Dynkin, E.1
-
2
-
-
0002012811
-
Maximal subgroups of the classical groups
-
E. Dynkin Maximal subgroups of the classical groups Trans. Amer. Math. Soc. 6 1957 245
-
(1957)
Trans. Amer. Math. Soc.
, vol.6
, pp. 245
-
-
Dynkin, E.1
-
3
-
-
0001166611
-
Unity of all elementary particle forces
-
H. Georgi, and S. Glashow Unity of all elementary particle forces Phys. Rev. Lett. 32 1974 438 441 10.1103/PhysRevLett.32.438
-
(1974)
Phys. Rev. Lett.
, vol.32
, pp. 438-441
-
-
Georgi, H.1
Glashow, S.2
-
4
-
-
84928085062
-
-
H. Georgi, Particles and fields, in: C.E. Carlson (Ed.), AIP Conference Proceedings, vol. 23, Williamsburg, 1974.
-
H. Georgi, Particles and fields, in: C.E. Carlson (Ed.), AIP Conference Proceedings, vol. 23, Williamsburg, 1974.
-
-
-
-
5
-
-
0001266652
-
Unified interactions of leptons and hadrons
-
H. Fritzsch, and P. Minkowski Unified interactions of leptons and hadrons Ann. Physics 93 1975 193 266 10.1016/0003-4916(75)90211-0
-
(1975)
Ann. Physics
, vol.93
, pp. 193-266
-
-
Fritzsch, H.1
Minkowski, P.2
-
6
-
-
0000543993
-
A universal Gauge theory model based on E6
-
F. Gursey, P. Ramond, and P. Sikivie A universal Gauge theory model based on E6 Phys. Lett. B 60 1976 177 10.1016/0370-2693(76)90417-2
-
(1976)
Phys. Lett. B
, vol.60
, pp. 177
-
-
Gursey, F.1
Ramond, P.2
Sikivie, P.3
-
7
-
-
0002266952
-
Group theory for unified model building
-
R. Slansky Group theory for unified model building Phys. Rep. 79 1981 1 128 10.1016/0370-1573(81)90092-2
-
(1981)
Phys. Rep.
, vol.79
, pp. 1-128
-
-
Slansky, R.1
-
8
-
-
0004051690
-
Tables of dimensions, indices, and branching rules for representations of simple Lie algebras
-
Dekker New York, NY
-
W.G. McKay, and J. Patera Tables of dimensions, indices, and branching rules for representations of simple Lie algebras Lecture Notes in Pure and Applied Mathematics 1981 Dekker New York, NY
-
(1981)
Lecture Notes in Pure and Applied Mathematics
-
-
McKay, W.G.1
Patera, J.2
-
9
-
-
33750190469
-
Lie algebras in particle physics. from isospin to unified theories
-
H. Georgi Lie algebras in particle physics. From isospin to unified theories Front. Phys. 54 1982 1 255
-
(1982)
Front. Phys.
, vol.54
, pp. 1-255
-
-
Georgi, H.1
-
11
-
-
0003937050
-
Semi-simple lie algebras and their representations
-
Benjamin Cummings Menlo Park, CA
-
R. Cahn Semi-simple lie algebras and their representations Front. Phys. Vol. 59 1984 Benjamin Cummings Menlo Park, CA
-
(1984)
Front. Phys.
, vol.59
-
-
Cahn, R.1
-
12
-
-
84928085061
-
-
M. van Leeuwen, A. Cohen, B. Lisser, LiE, A Package for Lie Group Computations, in: Computer Algebra, Nederland, Amsterdam, 1992. URL.
-
M. van Leeuwen, A. Cohen, B. Lisser, LiE, A Package for Lie Group Computations, in: Computer Algebra, Nederland, Amsterdam, 1992. URL: http://young.sp2mi.univ-poitiers.fr/~marc/LiE/.
-
-
-
-
13
-
-
84928085060
-
-
B.G. Wybourne, Schur (2002). URL.
-
B.G. Wybourne, Schur (2002). URL: http://smc.vnet.net/Schur.html.
-
-
-
-
14
-
-
84928085059
-
-
T. Nutma, Simplie (2009). URL.
-
T. Nutma, Simplie (2009). URL: http://code.google.com/p/simplie/.
-
-
-
-
15
-
-
84928085058
-
-
A. Nazarov, Affine. m - Mathematica package for computations in representation theory of finite-dimensional and affine Lie algebras.
-
A. Nazarov, Affine. m - Mathematica package for computations in representation theory of finite-dimensional and affine Lie algebras. arXiv:1107.4681.
-
-
-
-
16
-
-
84863110026
-
Calculating the renormalisation group equations of a susy model with susyno
-
arXiv:1106.5016
-
R.M. Fonseca Calculating the renormalisation group equations of a susy model with susyno Comput. Phys. Comm. 183 10 2012 2298 2306 http://dx.doi.org/10.1016/j.cpc.2012.05.017, arXiv:1106.5016
-
(2012)
Comput. Phys. Comm.
, vol.183
, Issue.10
, pp. 2298-2306
-
-
Fonseca, R.M.1
-
17
-
-
84863826899
-
An explicit SU(12) family and flavor unification model with natural fermion masses and mixings
-
arXiv:1204.5471
-
C.H. Albright, R.P. Feger, and T.W. Kephart An explicit SU(12) family and flavor unification model with natural fermion masses and mixings Phys. Rev. D 86 2012 015012 http://dx.doi.org/10.1103/PhysRevD.86.015012, arXiv:1204.5471
-
(2012)
Phys. Rev. D
, vol.86
, pp. 015012
-
-
Albright, C.H.1
Feger, R.P.2
Kephart, T.W.3
-
18
-
-
84889236313
-
Orbit functions
-
arXiv:math-ph/0601037
-
A. Klimyk, and J. Patera Orbit functions SIGMA 2 2006 6 66 http://dx.doi.org/10.3842/SIGMA.2006.006, arXiv:math-ph/0601037
-
(2006)
SIGMA
, vol.2
, pp. 6-66
-
-
Klimyk, A.1
Patera, J.2
-
19
-
-
84966203865
-
Fast recursion formula for weight multiplicities
-
R.V. Moody, and J. Patera Fast recursion formula for weight multiplicities Bull. Amer. Math. Soc. (N. S.) 7 1 1982 237 242
-
(1982)
Bull. Amer. Math. Soc. (N. S.)
, vol.7
, Issue.1
, pp. 237-242
-
-
Moody, R.V.1
Patera, J.2
-
20
-
-
36749118699
-
Congruence number, a generalization of SU(3) triality
-
F. Lemire, and J. Patera Congruence number, a generalization of SU(3) triality J. Math. Phys. 21 8 1980 2026 10.1063/1.524711
-
(1980)
J. Math. Phys.
, vol.21
, Issue.8
, pp. 2026
-
-
Lemire, F.1
Patera, J.2
-
21
-
-
0012057745
-
Decomposition of the direct product of irreducible representations of a semisimple Lie algebra into irreducible representations
-
A.U. Klimyk Decomposition of the direct product of irreducible representations of a semisimple Lie algebra into irreducible representations Amer. Math. Soc. Transl. Ser. 2 76 1967 63
-
(1967)
Amer. Math. Soc. Transl. Ser. 2
, Issue.76
, pp. 63
-
-
Klimyk, A.U.1
-
23
-
-
70450248532
-
Branching rules for the Weyl group orbits of the Lie algebra A(n)
-
arXiv:0909.2337
-
M. Larouche, M. Nesterenko, and J. Patera Branching rules for the Weyl group orbits of the Lie algebra A(n) J. Phys. A 42 48 2009 485203 http://dx.doi.org/10.1088/1751-8113/42/48/485203, arXiv:0909.2337
-
(2009)
J. Phys. A
, vol.42
, Issue.48
, pp. 485203
-
-
Larouche, M.1
Nesterenko, M.2
Patera, J.3
-
24
-
-
79952032805
-
Branching rules for Weyl group orbits of simple Lie algebras B(n), C(n) and D(n)
-
arXiv:1101.6043
-
M. Larouche, and J. Patera Branching rules for Weyl group orbits of simple Lie algebras B(n), C(n) and D(n) J. Phys. A 44 11 2011 115203 http://dx.doi.org/10.1088/1751-8113/44/11/115203, arXiv:1101.6043
-
(2011)
J. Phys. A
, vol.44
, Issue.11
, pp. 115203
-
-
Larouche, M.1
Patera, J.2
|