-
1
-
-
2042505710
-
A historical analysis of the Daniell cell and electrochemistry teaching in French and Tunisian textbooks
-
Boulabiar, A., Bouraoui, K., Chastrette, M. & Abderrabba, M. A historical analysis of the Daniell cell and electrochemistry teaching in French and Tunisian textbooks. J. Chem. Educ. 81, 754-757 (2004).
-
(2004)
J. Chem. Educ.
, vol.81
, pp. 754-757
-
-
Boulabiar, A.1
Bouraoui, K.2
Chastrette, M.3
Abderrabba, M.4
-
2
-
-
0009953128
-
Why the Daniell cell works
-
Martins, G. F. Why the Daniell cell works. J. Chem. Educ. 67, 482-482 (1990).
-
(1990)
J. Chem. Educ.
, vol.67
, pp. 482-482
-
-
Martins, G.F.1
-
3
-
-
38949102073
-
Building better batteries
-
Armand, M. & Tarascon, J. M. Building better batteries. Nature 451, 652-657 (2008).
-
(2008)
Nature
, vol.451
, pp. 652-657
-
-
Armand, M.1
Tarascon, J.M.2
-
4
-
-
49649105634
-
Nanomaterials for rechargeable lithium batteries
-
Bruce, P. G., Scrosati, B. & Tarascon, J. M. Nanomaterials for rechargeable lithium batteries. Angew. Chem. Int. Ed. 47, 2930-2946 (2008).
-
(2008)
Angew. Chem. Int. Ed.
, vol.47
, pp. 2930-2946
-
-
Bruce, P.G.1
Scrosati, B.2
Tarascon, J.M.3
-
5
-
-
77956050828
-
Raising the cycling stability of aqueous lithium-ion batteries by eliminating oxygen in the electrolyte
-
Luo, J. Y., Cui, W. J., He, P. & Xia, Y. Y. Raising the cycling stability of aqueous lithium-ion batteries by eliminating oxygen in the electrolyte. Nat. Chem. 2, 760-765 (2010).
-
(2010)
Nat. Chem.
, vol.2
, pp. 760-765
-
-
Luo, J.Y.1
Cui, W.J.2
He, P.3
Xia, Y.Y.4
-
6
-
-
84867295154
-
Recent progress in aqueous lithium-ion batteries
-
Wang, Y. G., Yi, J. & Xia, Y. Y. Recent progress in aqueous lithium-ion batteries. Adv. Energy Mater. 2, 830-840 (2012).
-
(2012)
Adv. Energy Mater.
, vol.2
, pp. 830-840
-
-
Wang, Y.G.1
Yi, J.2
Xia, Y.Y.3
-
7
-
-
83055186875
-
A dual-electrolyte rechargeable Li-air battery with phosphate buffer catholyte
-
Li, L. J., Zhao, X. S. & Manthiram, A. A dual-electrolyte rechargeable Li-air battery with phosphate buffer catholyte. Electrochem. Commun. 14, 78-81 (2012).
-
(2012)
Electrochem. Commun.
, vol.14
, pp. 78-81
-
-
Li, L.J.1
Zhao, X.S.2
Manthiram, A.3
-
8
-
-
84865720647
-
Polyprotic acid catholyte for high capacity dual-electrolyte Li-air batteries
-
Li, L. J., Zhao, X. S., Fu, Y. Z. & Manthiram, A. Polyprotic acid catholyte for high capacity dual-electrolyte Li-air batteries. Phys. Chem. Chem. Phys. 14, 12737-12740 (2012).
-
(2012)
Phys. Chem. Chem. Phys.
, vol.14
, pp. 12737-12740
-
-
Li, L.J.1
Zhao, X.S.2
Fu, Y.Z.3
Manthiram, A.4
-
9
-
-
79959824152
-
Rechargeable alkali-ion cathode-flow battery
-
Lu, Y. H. & Goodenough, J. B. Rechargeable alkali-ion cathode-flow battery. J. Mater. Chem. 21, 10113-10117 (2011).
-
(2011)
J. Mater. Chem.
, vol.21
, pp. 10113-10117
-
-
Lu, Y.H.1
Goodenough, J.B.2
-
10
-
-
79954510120
-
Aqueous cathode for next-generation alkali-ion batteries
-
Lu, Y. H., Goodenough, J. B. & Kim, Y. Aqueous cathode for next-generation alkali-ion batteries. J. Am. Chem. Soc. 133, 5756-5759 (2011).
-
(2011)
J. Am. Chem. Soc.
, vol.133
, pp. 5756-5759
-
-
Lu, Y.H.1
Goodenough, J.B.2
Kim, Y.3
-
11
-
-
77249091428
-
A novel high energy density rechargeable lithium/air battery
-
Zhang, T. et al. A novel high energy density rechargeable lithium/air battery. Chem. Commun. 46, 1661-1663 (2010).
-
(2010)
Chem. Commun.
, vol.46
, pp. 1661-1663
-
-
Zhang, T.1
-
12
-
-
54949116263
-
Li/polymer electrolyte/water stable lithium-conducting glass ceramics composite for lithium-air secondary batteries with an aqueous electrolyte
-
Zhang, T. et al. Li/polymer electrolyte/water stable lithium-conducting glass ceramics composite for lithium-air secondary batteries with an aqueous electrolyte. J. Electrochem. Soc. 155, A965-A969 (2008).
-
(2008)
J. Electrochem. Soc.
, vol.155
, pp. A965-A969
-
-
Zhang, T.1
-
13
-
-
84878740354
-
High-performance rechargeable lithiumiodine batteries using triiodide/iodide redox couples in an aqueous cathode
-
Zhao, Y., Wang, L. N. & Byon, H. R. High-performance rechargeable lithiumiodine batteries using triiodide/iodide redox couples in an aqueous cathode. Nat. Commun. 4, 1896-1902 (2013).
-
(2013)
Nat. Commun.
, vol.4
, pp. 1896-1902
-
-
Zhao, Y.1
Wang, L.N.2
Byon, H.R.3
-
14
-
-
84890115574
-
High-performance lithium-iodine flow battery
-
Zhao, Y. & Byon, H. R. High-performance lithium-iodine flow battery. Adv. Energy Mater. 3, 1630-1635 (2013).
-
(2013)
Adv. Energy Mater.
, vol.3
, pp. 1630-1635
-
-
Zhao, Y.1
Byon, H.R.2
-
15
-
-
84901347871
-
A reversible Br2/Br-redox couple in the aqueous phase as a highperformance catholyte for alkali-ion batteries
-
Zhao, Y. et al. A reversible Br2/Br-redox couple in the aqueous phase as a highperformance catholyte for alkali-ion batteries. Energy Environ. Sci. 7, 1990-1995 (2014).
-
(2014)
Energy Environ. Sci.
, vol.7
, pp. 1990-1995
-
-
Zhao, Y.1
-
16
-
-
77957293630
-
The development of a new type of rechargeable batteries based on hybrid electrolytes
-
Zhou, H. S., Wang, Y. G. Li, H. Q. & He, P. The development of a new type of rechargeable batteries based on hybrid electrolytes. ChemSusChem. 3, 1009-1019 (2010).
-
(2010)
ChemSusChem.
, vol.3
, pp. 1009-1019
-
-
Zhou, H.S.1
Wang, Y.G.2
Li, H.Q.3
He, P.4
-
17
-
-
78649714697
-
A Li-air fuel cell with recycle aqueous electrolyte for improved stability
-
He, P., Wang, Y. G. & Zhou, H. S. A Li-air fuel cell with recycle aqueous electrolyte for improved stability. Electrochem. Commun. 12, 1686-1689 (2010).
-
(2010)
Electrochem. Commun.
, vol.12
, pp. 1686-1689
-
-
He, P.1
Wang, Y.G.2
Zhou, H.S.3
-
18
-
-
69649107151
-
A lithium-air battery with a potential to continuously reduce O2from air for delivering energy
-
Wang, Y. G. & Zhou, H. S. A lithium-air battery with a potential to continuously reduce O2from air for delivering energy. J. Power Sources. 195, 358-361 (2010).
-
(2010)
J. Power Sources.
, vol.195
, pp. 358-361
-
-
Wang, Y.G.1
Zhou, H.S.2
-
19
-
-
77955836612
-
A lithium-air fuel cell using copper to catalyze oxygenreduction based on copper-corrosion mechanism
-
Wang, Y. G. & Zhou, H. S. A lithium-air fuel cell using copper to catalyze oxygenreduction based on copper-corrosion mechanism. Chem. Commun. 46, 6305-6307 (2010).
-
(2010)
Chem. Commun.
, vol.46
, pp. 6305-6307
-
-
Wang, Y.G.1
Zhou, H.S.2
-
20
-
-
69749088256
-
A new type rechargeable lithium battery based on a Cucathode
-
Wang, Y. G. & Zhou, H. S. A new type rechargeable lithium battery based on a Cucathode. Electrochem. Commun. 11, 1834-1837 (2009).
-
(2009)
Electrochem. Commun.
, vol.11
, pp. 1834-1837
-
-
Wang, Y.G.1
Zhou, H.S.2
-
21
-
-
82555193624
-
A lithium-air capacitor-battery based on a hybrid electrolyte
-
Wang, Y. G., He, P. & Zhou, H. S. A lithium-air capacitor-battery based on a hybrid electrolyte. Energy Environ. Sci. 4, 4994-4999 (2011).
-
(2011)
Energy Environ. Sci.
, vol.4
, pp. 4994-4999
-
-
Wang, Y.G.1
He, P.2
Zhou, H.S.3
-
22
-
-
84867300466
-
Li-redox flow batteries based on hybrid electrolytes: At the cross road between Li-ion and redox flow batteries
-
Wang, Y. R., He, P. & Zhou, H. S. Li-redox flow batteries based on hybrid electrolytes: at the cross road between Li-ion and redox flow batteries. Adv. Energy Mater. 2, 770-779 (2012).
-
(2012)
Adv. Energy Mater.
, vol.2
, pp. 770-779
-
-
Wang, Y.R.1
He, P.2
Zhou, H.S.3
-
23
-
-
84897990720
-
Superior rechargeability and efficiency of lithium-oxygen batteries: Hierarchical air electrode architecture combined with a soluble catalyst
-
Lim, H. D. et al. Superior rechargeability and efficiency of lithium-oxygen batteries: hierarchical air electrode architecture combined with a soluble catalyst. Angew. Chem. Int. Ed. 53, 3926-3931 (2014).
-
(2014)
Angew. Chem. Int. Ed.
, vol.53
, pp. 3926-3931
-
-
Lim, H.D.1
-
24
-
-
81555207951
-
Electrical energy storage for the grid: A battery of choices
-
Dunn, B., Kamath, H. & Tarascon, J. M. Electrical energy storage for the grid: a battery of choices. Science 334, 928-935 (2011).
-
(2011)
Science
, vol.334
, pp. 928-935
-
-
Dunn, B.1
Kamath, H.2
Tarascon, J.M.3
|