메뉴 건너뛰기




Volumn 38, Issue 5, 2014, Pages 339-358

Maximum-likelihood estimation of noncompensatory IRT models with the MH-RM algorithm

Author keywords

Multidimensional item response theory; Noncompensatory models; Stochastic estimation

Indexed keywords


EID: 84927721811     PISSN: 01466216     EISSN: 15523497     Source Type: Journal    
DOI: 10.1177/0146621614520958     Document Type: Article
Times cited : (21)

References (33)
  • 1
    • 84965673610 scopus 로고
    • Unidimensional IRT calibration of compensatory and noncompensatory multidimensional items
    • Ackerman, T. A. (1989). Unidimensional IRT calibration of compensatory and noncompensatory multidimensional items. Applied Psychological Measurement, 13, 113-127.
    • (1989) Applied Psychological Measurement , vol.13 , pp. 113-127
    • Ackerman, T.A.1
  • 2
    • 79955743864 scopus 로고    scopus 로고
    • Estimating a noncompensatory IRT model using Metropolis within Gibbs sampling
    • Babcock, B. (2011). Estimating a noncompensatory IRT model using Metropolis within Gibbs sampling. Applied Psychological Measurement, 35, 317-329.
    • (2011) Applied Psychological Measurement , vol.35 , pp. 317-329
    • Babcock, B.1
  • 4
    • 0001670658 scopus 로고
    • Some latent trait models and their use in inferring an examinee's ability
    • F. M. Lord & M. R. Novick (Eds.). Reading, MA: Addison-Wesley
    • Birnbaum, A. (1968). Some latent trait models and their use in inferring an examinee's ability. In F. M. Lord & M. R. Novick (Eds.), Statistical theories of mental test scores (pp. 395-479). Reading, MA: Addison-Wesley.
    • (1968) Statistical theories of mental test scores , pp. 395-479
    • Birnbaum, A.1
  • 5
    • 0000433590 scopus 로고
    • Marginal maximum likelihood estimation of item parameters: Application of an EM algorithm
    • Bock, R. D., & Aitkin, M. (1981). Marginal maximum likelihood estimation of item parameters: Application of an EM algorithm. Psychometrika, 46, 443-459.
    • (1981) Psychometrika , vol.46 , pp. 443-459
    • Bock, R.D.1    Aitkin, M.2
  • 7
    • 0345149832 scopus 로고    scopus 로고
    • Estimation of compensatory and noncompensatory multidimensional item response models using Markov Chain Monte Carlo
    • Bolt, D. M., & Lall, V. F. (2003). Estimation of compensatory and noncompensatory multidimensional item response models using Markov Chain Monte Carlo. Applied Psychological Measurement, 27, 395-414.
    • (2003) Applied Psychological Measurement , vol.27 , pp. 395-414
    • Bolt, D.M.1    Lall, V.F.2
  • 8
    • 77950076362 scopus 로고    scopus 로고
    • High-dimensional exploratory item factor analysis by a Metropolis-Hastings Robbins- Monro algorithm
    • Cai, L. (2010a). High-dimensional exploratory item factor analysis by a Metropolis-Hastings Robbins- Monro algorithm. Psychometrika, 75, 33-57.
    • (2010) Psychometrika , vol.75 , pp. 33-57
    • Cai, L.1
  • 9
    • 77958531760 scopus 로고    scopus 로고
    • Metropolis-Hastings Robbins-Monro algorithm for confirmatory item factor analysis
    • Cai, L. (2010b). Metropolis-Hastings Robbins-Monro algorithm for confirmatory item factor analysis. Journal of Educational and Behavioral Statistics, 35, 307-335.
    • (2010) Journal of Educational and Behavioral Statistics , vol.35 , pp. 307-335
    • Cai, L.1
  • 10
    • 84863321643 scopus 로고    scopus 로고
    • mirt: A multidimensional item response theory package for the R environment
    • Chalmers, R. P. (2012). mirt: A multidimensional item response theory package for the R environment. Journal of Statistical Software, 48(6), 1-29. Retrieved from http://www.jstatsoft.org/v48/i06
    • (2012) Journal of Statistical Software , vol.48 , Issue.6 , pp. 1-29
    • Chalmers, R.P.1
  • 11
    • 0002241603 scopus 로고    scopus 로고
    • Stochastic EM: Method and application
    • W. Gilks, S. Richardson, & D. Spiegel-halter (Eds.). London, England: Chapman & Hall
    • Diebolt, J., & Ip, E. H. S. (1996). Stochastic EM: Method and application. In W. Gilks, S. Richardson, & D. Spiegel-halter (Eds.), Markov chain Monte Carlo in practice (pp. 259-273). London, England: Chapman & Hall.
    • (1996) Markov chain Monte Carlo in practice , pp. 259-273
    • Diebolt, J.1    Ip, E.H.S.2
  • 12
    • 77956060011 scopus 로고    scopus 로고
    • A Markov Chain Monte Carlo approach to confirmatory item factor analysis
    • Edwards, M. C. (2010). A Markov Chain Monte Carlo approach to confirmatory item factor analysis. Psychometrika, 75, 474-497.
    • (2010) Psychometrika , vol.75 , pp. 474-497
    • Edwards, M.C.1
  • 14
    • 77956890234 scopus 로고
    • Monte Carlo simulation methods using Markov chains and their applications
    • Hastings, W. K. (1970). Monte Carlo simulation methods using Markov chains and their applications. Biometrika, 57, 97-109.
    • (1970) Biometrika , vol.57 , pp. 97-109
    • Hastings, W.K.1
  • 15
    • 0001469948 scopus 로고
    • Empirical comparison between factor analysis and multidimensional item response models
    • Knol, D. L., & Berger, M. P. F. (1991). Empirical comparison between factor analysis and multidimensional item response models. Multivariate Behavioral Research, 26, 457-477.
    • (1991) Multivariate Behavioral Research , vol.26 , pp. 457-477
    • Knol, D.L.1    Berger, M.P.F.2
  • 16
    • 0001453756 scopus 로고
    • The logical and mathematical foundation of latent structure analysis
    • S. A. Stouffer, L. Guttman, E. A. Suchman, P. F. Lazarsfeld, S. A. Star, & J. A. Clausen (Eds.). New York, NY: Wiley
    • Lazarsfeld, P. F. (1950). The logical and mathematical foundation of latent structure analysis. In S. A. Stouffer, L. Guttman, E. A. Suchman, P. F. Lazarsfeld, S. A. Star, & J. A. Clausen (Eds.), Measurement and prediction (pp. 362-412). New York, NY: Wiley. Lord, F. M. (1977, July). Discussion: Section 2. In D. J. Weiss (Ed.), Proceedings of the 1977 Computerized Adaptive Testing Conference (pp. 99-103). Minneapolis, MN.
    • (1950) Measurement and prediction , pp. 362-412
    • Lazarsfeld, P.F.1
  • 18
    • 0001044972 scopus 로고
    • Finding the observed information matrix when using the EM algorithm
    • Louis, T. A. (1982). Finding the observed information matrix when using the EM algorithm. Journal of the Royal Statistical Society: Series B, 44, 226-233.
    • (1982) Journal of the Royal Statistical Society: Series B , vol.44 , pp. 226-233
    • Louis, T.A.1
  • 19
    • 21844503102 scopus 로고
    • Psychometric latent response models
    • Maris, E. (1995). Psychometric latent response models. Psychometrika, 60, 523-547.
    • (1995) Psychometrika , vol.60 , pp. 523-547
    • Maris, E.1
  • 20
    • 0033239548 scopus 로고    scopus 로고
    • Estimating multiple classification latent class models
    • Maris, E. (1999). Estimating multiple classification latent class models. Psychometrika, 64, 187-212.
    • (1999) Psychometrika , vol.64 , pp. 187-212
    • Maris, E.1
  • 21
    • 0010038833 scopus 로고
    • A general approach to nonlinear factor analysis
    • McDonald, R. P. (1962). A general approach to nonlinear factor analysis. Psychometrika, 27, 397-415.
    • (1962) Psychometrika , vol.27 , pp. 397-415
    • McDonald, R.P.1
  • 28
    • 28844454343 scopus 로고    scopus 로고
    • High-dimensional maximum marginal likelihood item factor analysis by adaptive quadrature
    • Schilling, S., & Bock, R. D. (2005). High-dimensional maximum marginal likelihood item factor analysis by adaptive quadrature. Psychometrika, 70, 533-555.
    • (2005) Psychometrika , vol.70 , pp. 533-555
    • Schilling, S.1    Bock, R.D.2
  • 29
    • 0039952283 scopus 로고
    • A model for testing with multidimensional items
    • (July) D. J. Weiss (Ed.), Minneapolis, MN
    • Sympson, J. B. (1977, July). A model for testing with multidimensional items. In D. J. Weiss (Ed.), Proceedings of the 1977 Computerized Adaptive Testing Conference (pp. 82-98). Minneapolis, MN.
    • (1977) Proceedings of the 1977 Computerized Adaptive Testing Conference , pp. 82-98
    • Sympson, J.B.1
  • 30
  • 31
    • 84927736972 scopus 로고
    • Multicomponent latent trait models for ability tests
    • Whitely, S. E. (1980). Multicomponent latent trait models for ability tests. Psychometrika, 60, 181-198.
    • (1980) Psychometrika , vol.60 , pp. 181-198
    • Whitely, S.E.1
  • 33
    • 84862619863 scopus 로고    scopus 로고
    • Calibration of response data using MIRT models with simple and mixed structures
    • Zhang, J. (2012). Calibration of response data using MIRT models with simple and mixed structures. Applied Psychological Measurement, 36, 375-398.
    • (2012) Applied Psychological Measurement , vol.36 , pp. 375-398
    • Zhang, J.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.