메뉴 건너뛰기




Volumn 283, Issue , 2014, Pages 295-306

A machine learning approach to identify prostate cancer areas in complex histological images

Author keywords

[No Author keywords available]

Indexed keywords

ARTIFICIAL INTELLIGENCE; DISEASES; GRADING; GRAPHIC METHODS; LEARNING SYSTEMS; UROLOGY;

EID: 84927632284     PISSN: 21945357     EISSN: None     Source Type: Book Series    
DOI: 10.1007/978-3-319-06593-9_26     Document Type: Article
Times cited : (9)

References (13)
  • 1
    • 84861599138 scopus 로고    scopus 로고
    • A contemporary update on pathology reporting for prostate cancer: Biopsy and radical prostatectomy specimens
    • Fine, S.W., Amin, M.B., Berney, D.M., et al.: A contemporary update on pathology reporting for prostate cancer: biopsy and radical prostatectomy specimens. Eur. Urol. 62(1), 20–39 (2012)
    • (2012) Eur. Urol , vol.62 , Issue.1 , pp. 20-39
    • Fine, S.W.1    Amin, M.B.2    Berney, D.M.3
  • 2
    • 84876057180 scopus 로고    scopus 로고
    • Contemporary grading for prostate cancer: Implications for patient care
    • Brimo, F., Montironi, R., Egevad, L., et al.: Contemporary Grading for Prostate Cancer: Implications for Patient Care. Eur. Urol. 63(5), 892–901 (2013)
    • (2013) Eur. Urol , vol.63 , Issue.5 , pp. 892-901
    • Brimo, F.1    Montironi, R.2    Egevad, L.3
  • 3
    • 84867896468 scopus 로고    scopus 로고
    • Cascaded discrimination of normal, abnormal, and confounder classes in histopathology: Gleason grading of prostate cancer
    • Dole, S., Feldman, M.D., Shih, N., Tomaszewski, J., Madabhushi, A.: Cascaded discrimination of normal, abnormal, and confounder classes in histopathology: Gleason grading of prostate cancer. BMC Bioinformatics, 13–282 (2012)
    • (2012) BMC Bioinformatics , pp. 13-282
    • Dole, S.1    Feldman, M.D.2    Shih, N.3    Tomaszewski, J.4    Madabhushi, A.5
  • 4
    • 84885143428 scopus 로고    scopus 로고
    • Prostate histopathology: Learning tissue component histograms for cancer detection and classification
    • Gorelick, L., Veksler, O., Gaed, M., et al.: Prostate Histopathology: Learning Tissue Component Histograms for Cancer Detection and Classification. IEEE Transactions on Medical Imaging 32(10), 1804–1818 (2013)
    • (2013) IEEE Transactions on Medical Imaging , vol.32 , Issue.10 , pp. 1804-1818
    • Gorelick, L.1    Veksler, O.2    Gaed, M.3
  • 7
    • 84862489810 scopus 로고    scopus 로고
    • Computer-aided identification of prostatic adenocarcinoma: Segmentation of glandular structures
    • Peng, Y., Jiang, Y., Eisengart, L., Healy, M.A., Straus, F.H., Yang, X.J.: Computer-aided identification of prostatic adenocarcinoma: Segmentation of glandular structures. J. Pathol. Inform. 2, 33 (2011)
    • (2011) J. Pathol. Inform , vol.2 , pp. 33
    • Peng, Y.1    Jiang, Y.2    Eisengart, L.3    Healy, M.A.4    Straus, F.H.5    Yang, X.J.6
  • 8
    • 84872534252 scopus 로고    scopus 로고
    • Structure & context in prostatic gland segmentation and classification
    • In: Ayache, N., Delingette, H., Golland, P., Mori, K. (eds.), Springer, Heidelberg
    • Nguyen, K., Sarkar, A., Jain, A.K.: Structure & Context in Prostatic Gland Segmentation and Classification. In: Ayache, N., Delingette, H., Golland, P., Mori, K. (eds.) MICCAI 2012, Part I. LNCS, vol. 7510, pp. 115–123. Springer, Heidelberg (2012)
    • (2012) MICCAI 2012, Part I. LNCS , vol.7510 , pp. 115-123
    • Nguyen, K.1    Sarkar, A.2    Jain, A.K.3
  • 13
    • 84950632109 scopus 로고
    • Objective criteria for the evaluation of clustering methods
    • Rand, W.M.: Objective criteria for the evaluation of clustering methods. Journal of the American Statistical Association 66(336), 846–850 (1971)
    • (1971) Journal of the American Statistical Association , vol.66 , Issue.336 , pp. 846-850
    • Rand, W.M.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.