메뉴 건너뛰기




Volumn 94, Issue 4, 2014, Pages 772-780

Using multiple regression, Bayesian networks and artificial neural networks for prediction of total egg production in European quails based on earlier expressed phenotypes

Author keywords

Bayesian networks; egg production; non parametric model; phenotypic network; prediction model

Indexed keywords

COTURNIX COTURNIX; PHASIANIDAE;

EID: 84926672752     PISSN: 00325791     EISSN: 15253171     Source Type: Journal    
DOI: 10.3382/ps/pev031     Document Type: Article
Times cited : (41)

References (24)
  • 1
    • 73449116736 scopus 로고    scopus 로고
    • Poultry growth modeling using neural networks and simulated data
    • Ahmad, H. A. 2009. Poultry growth modeling using neural networks and simulated data. J. Appl. Poult. Res. 18:440-446.
    • (2009) J. Appl. Poult. Res. , vol.18 , pp. 440-446
    • Ahmad, H.A.1
  • 2
    • 53949083291 scopus 로고    scopus 로고
    • Neural network model for egg production curve
    • Ahmad, H. A., and A. Golian. 2008. Neural network model for egg production curve. J. Anim. Vet. Adv. 7:1168-1170.
    • (2008) J. Anim. Vet. Adv. , vol.7 , pp. 1168-1170
    • Ahmad, H.A.1    Golian, A.2
  • 3
    • 76749137632 scopus 로고    scopus 로고
    • Local causal and Markov Blanket induction for causal discovery and feature selection for classification Part I: Algorithms and empirical evaluation
    • Aliferis, C. E., A. Stanikov, I. Tsamardinos, S. Mani, and X. D. Koutsoukos. 2010. Local causal and Markov Blanket induction for causal discovery and feature selection for classification Part I: Algorithms and empirical evaluation. J. Mach Learn. Res. 11:171-234.
    • (2010) J. Mach Learn. Res. , vol.11 , pp. 171-234
    • Aliferis, C.E.1    Stanikov, A.2    Tsamardinos, I.3    Mani, S.4    Koutsoukos, X.D.5
  • 6
    • 81555221209 scopus 로고    scopus 로고
    • Use of neural network models to estimate early egg production in broiler breeder hens through dietary nutrient intake
    • Faridi, A., and A. Golian. 2011. Use of neural network models to estimate early egg production in broiler breeder hens through dietary nutrient intake. Poult. Sci. 90:2897-903.
    • (2011) Poult. Sci. , vol.90 , pp. 2897-2903
    • Faridi, A.1    Golian, A.2
  • 7
    • 84869194219 scopus 로고    scopus 로고
    • Genomic selection for poultry breeding
    • Fulton, J. E. 2012. Genomic selection for poultry breeding. Animal Frontiers. 2:30-36.
    • (2012) Animal Frontiers. , vol.2 , pp. 30-36
    • Fulton, J.E.1
  • 8
    • 80053594474 scopus 로고    scopus 로고
    • Predicting complex quantitative traits with Bayesian neural networks: A case study with Jersey cows and wheat
    • Gianola, D., H. Okut, K. A. Weigel, and G. J. M. Rosa. 2011. Predicting complex quantitative traits with Bayesian neural networks: a case study with Jersey cows and wheat. BMC Genet. 12:87.
    • (2011) BMC Genet. , vol.12 , pp. 87
    • Gianola, D.1    Okut, H.2    Weigel, K.A.3    Rosa, G.J.M.4
  • 9
    • 1242277374 scopus 로고    scopus 로고
    • Rules of thumb for judging ecological theories
    • Ginzburg, L. R., and C. X. J. Jensen. 2004. Rules of thumb for judging ecological theories. Trends Ecol Evol. 19:121-126.
    • (2004) Trends Ecol Evol. , vol.19 , pp. 121-126
    • Ginzburg, L.R.1    Jensen, C.X.J.2
  • 11
    • 0001159321 scopus 로고
    • The impact of model selection on inference and linear regression
    • Hurvich, C. M., and C. L. Tsai. 1990. The impact of model selection on inference and linear regression. Am. Stat. 44:214-217.
    • (1990) Am. Stat. , vol.44 , pp. 214-217
    • Hurvich, C.M.1    Tsai, C.L.2
  • 13
    • 0001006209 scopus 로고
    • Local computations with probabilities on graphical structures and their applications to expert systems
    • Lauritzen, S. L., and D. J. Spiegelhalter. 1988. Local computations with probabilities on graphical structures and their applications to expert systems. J. R Stat. Soc. 50:157-224.
    • (1988) J. R Stat. Soc. , vol.50 , pp. 157-224
    • Lauritzen, S.L.1    Spiegelhalter, D.J.2
  • 15
    • 84869778538 scopus 로고    scopus 로고
    • Development of artificial neural network models based on experimental data of response surface methodology to establish the nutritional requirements of digestible lysine, methionine, and threonine in broiler chicks
    • Mehri, M. 2012. Development of artificial neural network models based on experimental data of response surface methodology to establish the nutritional requirements of digestible lysine, methionine, and threonine in broiler chicks. Poult. Sci. 91:3280-3285.
    • (2012) Poult. Sci. , vol.91 , pp. 3280-3285
    • Mehri, M.1
  • 16
    • 84875030685 scopus 로고    scopus 로고
    • A comparison of neural network models, fuzzy logic, and multiple linear regression for prediction of hatchability
    • Mehri, M. 2013. A comparison of neural network models, fuzzy logic, and multiple linear regression for prediction of hatchability. Poult. Sci. 92:1138-42.
    • (2013) Poult. Sci. , vol.92 , pp. 1138-1142
    • Mehri, M.1
  • 20
    • 77955124773 scopus 로고    scopus 로고
    • Learning Bayesian Networks with the bnlearn R package
    • Scutari, M. 2010. Learning Bayesian Networks with the bnlearn R package. J. Stat. Softw. 35:1-22.
    • (2010) J. Stat. Softw. , vol.35 , pp. 1-22
    • Scutari, M.1
  • 23
    • 33746035971 scopus 로고    scopus 로고
    • The maxmin hill-climbing Bayesian network structure learning algorithm
    • Tsamardinos, I., L. E. Brown, and C. F. Aliferis. 2006. The maxmin hill-climbing Bayesian network structure learning algorithm. Machine Learning. 65:31-78.
    • (2006) Machine Learning. , vol.65 , pp. 31-78
    • Tsamardinos, I.1    Brown, L.E.2    Aliferis, C.F.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.