메뉴 건너뛰기




Volumn 22, Issue 11, 2014, Pages 601-602

Behavioral insights on big data: Using social media for predicting biomedical outcomes

Author keywords

Behavioral insights; Big data; Prediction; Social media

Indexed keywords

ATTITUDE TO HEALTH; BEHAVIOR ASSESSMENT; BEHAVIORAL SCIENCE; DATA ANALYSIS; EPIDEMIC; HEALTH BEHAVIOR; HIGH RISK BEHAVIOR; HUMAN; INFORMATION DISSEMINATION; INFORMATION SCIENCE; INFORMATION STORAGE; INTERNATIONAL COOPERATION; MEDICAL INFORMATION; NOTE; PREDICTION; PRIORITY JOURNAL; RISK ASSESSMENT; SEARCH ENGINE; SOCIAL MEDIA; EPIDEMIOLOGICAL MONITORING; PROCEDURES; STATISTICS AND NUMERICAL DATA; TRENDS;

EID: 84926663251     PISSN: 0966842X     EISSN: 18784380     Source Type: Journal    
DOI: 10.1016/j.tim.2014.08.004     Document Type: Note
Times cited : (60)

References (9)
  • 1
    • 84891941337 scopus 로고    scopus 로고
    • National and local influenza surveillance through Twitter: an analysis of the 2012-2013 influenza epidemic
    • Broniatowski D.A., et al. National and local influenza surveillance through Twitter: an analysis of the 2012-2013 influenza epidemic. PLoS ONE 2013, 8:e83672.
    • (2013) PLoS ONE , vol.8 , pp. e83672
    • Broniatowski, D.A.1
  • 2
    • 78649725192 scopus 로고    scopus 로고
    • Pandemics in the age of Twitter: content analysis of Tweets during the 2009 H1N1 outbreak
    • Chew C., Eysenbach G. Pandemics in the age of Twitter: content analysis of Tweets during the 2009 H1N1 outbreak. PLoS ONE 2010, 5:e14118.
    • (2010) PLoS ONE , vol.5 , pp. e14118
    • Chew, C.1    Eysenbach, G.2
  • 3
    • 84900838895 scopus 로고    scopus 로고
    • Methods of using real-time social media technologies for detection and remote monitoring of HIV outcomes
    • Young S.D., et al. Methods of using real-time social media technologies for detection and remote monitoring of HIV outcomes. Prev. Med. 2014, 63:112-115.
    • (2014) Prev. Med. , vol.63 , pp. 112-115
    • Young, S.D.1
  • 4
    • 84878979335 scopus 로고    scopus 로고
    • Biology: the big challenges of big data
    • Marx V. Biology: the big challenges of big data. Nature 2013, 498:255-260.
    • (2013) Nature , vol.498 , pp. 255-260
    • Marx, V.1
  • 5
    • 84875646817 scopus 로고    scopus 로고
    • The inevitable application of big data to health care
    • Murdoch T.B., Detsky A.S. The inevitable application of big data to health care. JAMA 2013, 309:1351-1352.
    • (2013) JAMA , vol.309 , pp. 1351-1352
    • Murdoch, T.B.1    Detsky, A.S.2
  • 6
    • 84883360748 scopus 로고    scopus 로고
    • Using Twitter to examine smoking behavior and perceptions of emerging tobacco products
    • Myslín M., et al. Using Twitter to examine smoking behavior and perceptions of emerging tobacco products. J. Med. Internet Res. 2013, 15:e174.
    • (2013) J. Med. Internet Res. , vol.15 , pp. e174
    • Myslín, M.1
  • 7
    • 68949190919 scopus 로고    scopus 로고
    • Extrapolating psychological insights from Facebook profiles: a study of religion and relationship status
    • Young S., et al. Extrapolating psychological insights from Facebook profiles: a study of religion and relationship status. Cyberpsychol. Behav. 2009, 12:347-350.
    • (2009) Cyberpsychol. Behav. , vol.12 , pp. 347-350
    • Young, S.1
  • 8
    • 84872912780 scopus 로고    scopus 로고
    • Online social networking for HIV education and prevention: a mixed-methods analysis
    • Young S.D., Jaganath D. Online social networking for HIV education and prevention: a mixed-methods analysis. Sex. Transm. Dis. 2013, 40:162-167.
    • (2013) Sex. Transm. Dis. , vol.40 , pp. 162-167
    • Young, S.D.1    Jaganath, D.2
  • 9
    • 84896056107 scopus 로고    scopus 로고
    • Big data. The parable of Google Flu: traps in big data analysis
    • Lazer D., et al. Big data. The parable of Google Flu: traps in big data analysis. Science 2014, 343:1203-1205.
    • (2014) Science , vol.343 , pp. 1203-1205
    • Lazer, D.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.