메뉴 건너뛰기




Volumn 85, Issue 1, 2015, Pages 3-28

A guide to Bayesian model selection for ecologists

Author keywords

Akaike information criterion; Bayes factors; Cross validation; Deviance information criterion; Model averaging; Multi model inference; Regularization; Shrinkage

Indexed keywords

AKAIKE INFORMATION CRITERION; BAYESIAN ANALYSIS; ECOLOGICAL APPROACH; MODEL TEST; MODEL VALIDATION; PHILOSOPHY;

EID: 84926655351     PISSN: 00129615     EISSN: 15577015     Source Type: Journal    
DOI: 10.1890/14-0661.1     Document Type: Article
Times cited : (618)

References (87)
  • 2
    • 77956264822 scopus 로고    scopus 로고
    • Predictive likelihood for Bayesian model selection and averaging
    • Ando, T., and R. Tsay. 2010. Predictive likelihood for Bayesian model selection and averaging. International Journal of Forecasting 26:744-763.
    • (2010) International Journal of Forecasting , vol.26 , pp. 744-763
    • Ando, T.1    Tsay, R.2
  • 3
    • 84890140417 scopus 로고    scopus 로고
    • Bayesian multimodel inference by RJMCMC: A Gibbs sampling approach
    • Barker, R. J., and W. A. Link. 2013. Bayesian multimodel inference by RJMCMC: A Gibbs sampling approach. American Statistician 67:150-156.
    • (2013) American Statistician , vol.67 , pp. 150-156
    • Barker, R.J.1    Link, W.A.2
  • 5
    • 0000626524 scopus 로고
    • Expected information as expected utility
    • Bernardo, J. M. 1979. Expected information as expected utility. Annals of Statistics 7:686-690.
    • (1979) Annals of Statistics , vol.7 , pp. 686-690
    • Bernardo, J.M.1
  • 7
    • 84883992559 scopus 로고    scopus 로고
    • Princeton University Press, Princeton, New Jersey, USA
    • Bolker, B. 2008. Ecological models and data in R. Princeton University Press, Princeton, New Jersey, USA.
    • (2008) Ecological Models and Data in R
    • Bolker, B.1
  • 8
    • 65349182397 scopus 로고    scopus 로고
    • Learning hierarchical models: Advice for the rest of us
    • Bolker, B. 2009. Learning hierarchical models: advice for the rest of us. Ecological Applications 19:588-592.
    • (2009) Ecological Applications , vol.19 , pp. 588-592
    • Bolker, B.1
  • 9
    • 84871951819 scopus 로고    scopus 로고
    • Consistent highdimensional Bayesian variable selection via penalized credible regions
    • Bondell, H. D., and B. J. Reich. 2012. Consistent highdimensional Bayesian variable selection via penalized credible regions. Journal of the American Statistical Association 107:1610-1624.
    • (2012) Journal of the American Statistical Association , vol.107 , pp. 1610-1624
    • Bondell, H.D.1    Reich, B.J.2
  • 11
  • 13
    • 12944287801 scopus 로고    scopus 로고
    • Why environmental scientists are becoming Bayesians
    • Clark, J. S. 2005. Why environmental scientists are becoming Bayesians. Ecology Letters 8:2-14.
    • (2005) Ecology Letters , vol.8 , pp. 2-14
    • Clark, J.S.1
  • 16
    • 24944555208 scopus 로고    scopus 로고
    • Bayesian model choice based on Monte Carlo estimates of posterior model probabilities
    • Congdon, P. 2006. Bayesian model choice based on Monte Carlo estimates of posterior model probabilities. Computational Statistics and Data Analysis 50:346-357.
    • (2006) Computational Statistics and Data Analysis , vol.50 , pp. 346-357
    • Congdon, P.1
  • 17
    • 65349116559 scopus 로고    scopus 로고
    • Accounting for uncertainty in ecological analysis: The strengths and limitations of hierarchical statistical modeling
    • Cressie, N., C. A. Calder, J. S. Clark, J. M. Ver Hoef, and C. K. Wikle. 2009. Accounting for uncertainty in ecological analysis: the strengths and limitations of hierarchical statistical modeling. Ecological Applications 19:553-570.
    • (2009) Ecological Applications , vol.19 , pp. 553-570
    • Cressie, N.1    Calder, C.A.2    Clark, J.S.3    Ver Hoef, J.M.4    Wikle, C.K.5
  • 18
    • 70450231574 scopus 로고    scopus 로고
    • Predictive model assessment for count data
    • Czado, C., T. Gneiting, and L. Held. 2009. Predictive model assessment for count data. Biometrics 65:1254-1261.
    • (2009) Biometrics , vol.65 , pp. 1254-1261
    • Czado, C.1    Gneiting, T.2    Held, L.3
  • 19
    • 77954245731 scopus 로고    scopus 로고
    • Alternative regression methods are not considered in Murtaugh (2009) or by ecologists in general
    • Dahlgren, J. P. 2010. Alternative regression methods are not considered in Murtaugh (2009) or by ecologists in general. Ecology Letters 13:E7-E9.
    • (2010) Ecology Letters , vol.13 , pp. E7-E9
    • Dahlgren, J.P.1
  • 20
    • 0343198394 scopus 로고    scopus 로고
    • On Bayesian model and variable selection using MCMC
    • Department of Statistics, Athens University of Economics and Business, Athens, Greece
    • Dellaportas, P., J. J. Forster, and I. Ntzoufras. 1997. On Bayesian model and variable selection using MCMC. Technical report. Department of Statistics, Athens University of Economics and Business, Athens, Greece.
    • (1997) Technical Report
    • Dellaportas, P.1    Forster, J.J.2    Ntzoufras, I.3
  • 21
    • 77955459355 scopus 로고    scopus 로고
    • Models for inference in dynamic metacommunity systems
    • Dorazio, R. M., M. Kery, J. A. Royle, and M. Plattner. 2010. Models for inference in dynamic metacommunity systems. Ecology 91:2466-2475.
    • (2010) Ecology , vol.91 , pp. 2466-2475
    • Dorazio, R.M.1    Kery, M.2    Royle, J.A.3    Plattner, M.4
  • 22
    • 84871007470 scopus 로고    scopus 로고
    • A Gibbs sampler for Bayesian analysis of site-occupancy data
    • Dorazio, R. M., and D. T. Rodriquez. 2012. A Gibbs sampler for Bayesian analysis of site-occupancy data. Methods in Ecology and Evolution 3:1093-1098.
    • (2012) Methods in Ecology and Evolution , vol.3 , pp. 1093-1098
    • Dorazio, R.M.1    Rodriquez, D.T.2
  • 23
    • 83155180509 scopus 로고    scopus 로고
    • A predictive model of avian natal dispersal distance provides prior information for investigating response to landscape change
    • Garrard, G. E., M. A. McCarthy, P. A. Vesk, J. Q. Radford, and A. F. Bennett. 2012. A predictive model of avian natal dispersal distance provides prior information for investigating response to landscape change. Journal of Animal Ecology 81:14-23.
    • (2012) Journal of Animal Ecology , vol.81 , pp. 14-23
    • Garrard, G.E.1    McCarthy, M.A.2    Vesk, P.A.3    Radford, J.Q.4    Bennett, A.F.5
  • 25
    • 0002799511 scopus 로고    scopus 로고
    • Model choice: A minimum posterior predictive loss approach
    • Gelfand, A. E., and S. K. Ghosh. 1998. Model choice: a minimum posterior predictive loss approach. Biometrika 85:1-13.
    • (1998) Biometrika , vol.85 , pp. 1-13
    • Gelfand, A.E.1    Ghosh, S.K.2
  • 31
    • 80054681355 scopus 로고    scopus 로고
    • Rao-Blackwellization for Bayesian variable selection and model averaging in linear and binary regression: A novel data augmentation approach
    • Ghosh, J., and M. A. Clyde. 2011. Rao-Blackwellization for Bayesian variable selection and model averaging in linear and binary regression: a novel data augmentation approach. Journal of the American Statistical Association 106:1041-1052.
    • (2011) Journal of the American Statistical Association , vol.106 , pp. 1041-1052
    • Ghosh, J.1    Clyde, M.A.2
  • 34
    • 0035591051 scopus 로고    scopus 로고
    • On the relationship between Markov chain Monte Carlo methods for model uncertainty
    • Godsill, S. J. 2001. On the relationship between Markov chain Monte Carlo methods for model uncertainty. Journal of Computational and Statistical Graphics 10:230-248.
    • (2001) Journal of Computational and Statistical Graphics , vol.10 , pp. 230-248
    • Godsill, S.J.1
  • 36
    • 1342330862 scopus 로고    scopus 로고
    • Confronting multicollinearity in ecological multiple regression
    • Graham, M. H. 2003. Confronting multicollinearity in ecological multiple regression. Ecology 84:2809-2815.
    • (2003) Ecology , vol.84 , pp. 2809-2815
    • Graham, M.H.1
  • 37
    • 77956889087 scopus 로고
    • Reversible jump Markov chain Monte Carlo computation and Bayesian model determination
    • Green, P. J. 1995. Reversible jump Markov chain Monte Carlo computation and Bayesian model determination. Biometrika 82:711-732.
    • (1995) Biometrika , vol.82 , pp. 711-732
    • Green, P.J.1
  • 38
    • 84864003110 scopus 로고    scopus 로고
    • Model choice using reversible jump Markov chain Monte Carlo
    • Hastie, D. I., and P. J. Green. 2012. Model choice using reversible jump Markov chain Monte Carlo. Statistica Neerlandica 66:309-338.
    • (2012) Statistica Neerlandica , vol.66 , pp. 309-338
    • Hastie, D.I.1    Green, P.J.2
  • 40
    • 79955479019 scopus 로고    scopus 로고
    • T. Kneib and G. Tutz, editors. Statistical modelling and regression structures: festschrift in honour of Ludwig Fahrmeir. Springer, New York, New York, USA
    • Held, L., B. Schrodle, and H. Rue. 2010. Posterior and crossvalidatory predictive checks: a comparison of MCMC and INLA. Pages 91-109 in T. Kneib and G. Tutz, editors. Statistical modelling and regression structures: festschrift in honour of Ludwig Fahrmeir. Springer, New York, New York, USA.
    • (2010) Posterior and Crossvalidatory Predictive Checks: A Comparison of MCMC and INLA , pp. 91-109
    • Held, L.1    Schrodle, B.2    Rue, H.3
  • 41
    • 70349871297 scopus 로고    scopus 로고
    • New tools for insight from ecological models and data
    • Hobbs, N. T. 2009. New tools for insight from ecological models and data. Ecological Applications 19:551-552.
    • (2009) Ecological Applications , vol.19 , pp. 551-552
    • Hobbs, N.T.1
  • 44
    • 0242592267 scopus 로고    scopus 로고
    • Predicting the spatial distribution of ground flora on large domains using a hierarchical Bayesian model
    • Hooten, M. B., D. R. Larsen, and C. K. Wikle. 2003. Predicting the spatial distribution of ground flora on large domains using a hierarchical Bayesian model. Landscape Ecology 18:487-502.
    • (2003) Landscape Ecology , vol.18 , pp. 487-502
    • Hooten, M.B.1    Larsen, D.R.2    Wikle, C.K.3
  • 46
    • 0003414592 scopus 로고
    • Third edition. Oxford University Press, Oxford, UK
    • Jeffreys, H. 1961. Theory of probability. Third edition. Oxford University Press, Oxford, UK.
    • (1961) Theory of Probability
    • Jeffreys, H.1
  • 47
  • 48
    • 80755125967 scopus 로고    scopus 로고
    • Bayesian multimodel inference for geostatistical regression models
    • Johnson, D. S., and J. A. Hoeting. 2011. Bayesian multimodel inference for geostatistical regression models. PLoS ONE 6:e25677.
    • (2011) PLoS ONE , vol.6 , pp. e25677
    • Johnson, D.S.1    Hoeting, J.A.2
  • 52
    • 17944393449 scopus 로고    scopus 로고
    • Monitoring programs need to take into account imperfect species detectability
    • Kery, M., and H. Schmid. 2004. Monitoring programs need to take into account imperfect species detectability. Basic and Applied Ecology 5:65-73.
    • (2004) Basic and Applied Ecology , vol.5 , pp. 65-73
    • Kery, M.1    Schmid, H.2
  • 55
    • 78049484065 scopus 로고    scopus 로고
    • Penalized regression, standard errors, and Bayesian lassos
    • Kyung, M., J. Gill, M. Ghosh, and G. Casella. 2010. Penalized regression, standard errors, and Bayesian lassos. Bayesian Analysis 5:369-412.
    • (2010) Bayesian Analysis , vol.5 , pp. 369-412
    • Kyung, M.1    Gill, J.2    Ghosh, M.3    Casella, G.4
  • 58
    • 33845360384 scopus 로고    scopus 로고
    • Model weights and the foundations of multimodel inference
    • Link, W. A., and R. J. Barker. 2006. Model weights and the foundations of multimodel inference. Ecology 87:2626-2635.
    • (2006) Ecology , vol.87 , pp. 2626-2635
    • Link, W.A.1    Barker, R.J.2
  • 60
    • 0344585053 scopus 로고    scopus 로고
    • Estimating site occupancy, colonization, and local extinction when a species is detected imperfectly
    • MacKenzie, D. I., J. D. Nichols, J. E. Hines, M. G. Knutson, and A. B. Franklin. 2003. Estimating site occupancy, colonization, and local extinction when a species is detected imperfectly. Ecology 84:2200-2255.
    • (2003) Ecology , vol.84 , pp. 2200-2255
    • MacKenzie, D.I.1    Nichols, J.D.2    Hines, J.E.3    Knutson, M.G.4    Franklin, A.B.5
  • 63
    • 84950945692 scopus 로고
    • Model selection and accounting for model uncertainty in graphical models using Occam's window
    • Madigan, D., and A. E. Raftery. 1994. Model selection and accounting for model uncertainty in graphical models using Occam's window. Journal of the American Statistical Association 89:1535-1546.
    • (1994) Journal of the American Statistical Association , vol.89 , pp. 1535-1546
    • Madigan, D.1    Raftery, A.E.2
  • 65
  • 66
    • 77949297716 scopus 로고    scopus 로고
    • Improved estimation of site occupancy using penalized likelihood
    • Moreno, M., and S. R. Lele. 2010. Improved estimation of site occupancy using penalized likelihood. Ecology 91:341-346.
    • (2010) Ecology , vol.91 , pp. 341-346
    • Moreno, M.1    Lele, S.R.2
  • 67
    • 69249230467 scopus 로고    scopus 로고
    • A review of Bayesian variable selection methods: What, how and which
    • O'Hara, R. B., and M. J. Sillanpaa. 2009. A review of Bayesian variable selection methods: What, how and which. Bayesian Analysis 4:85-118.
    • (2009) Bayesian Analysis , vol.4 , pp. 85-118
    • O'Hara, R.B.1    Sillanpaa, M.J.2
  • 68
    • 77952563168 scopus 로고    scopus 로고
    • Explaining variational approximations
    • Omerod, J. T., and M. P. Wand. 2010. Explaining variational approximations. American Statistician 64:140-153.
    • (2010) American Statistician , vol.64 , pp. 140-153
    • Omerod, J.T.1    Wand, M.P.2
  • 70
    • 0011292458 scopus 로고
    • The conditional predictive ordinate for the normal distribution
    • Pettit, L. I. 1990. The conditional predictive ordinate for the normal distribution. Journal of the American Statistical Association 52:175-184.
    • (1990) Journal of the American Statistical Association , vol.52 , pp. 175-184
    • Pettit, L.I.1
  • 72
    • 45849088346 scopus 로고    scopus 로고
    • Penalized loss functions for Bayesian model comparison
    • Plummer, M. 2008. Penalized loss functions for Bayesian model comparison. Biostatistics 9:523-539.
    • (2008) Biostatistics , vol.9 , pp. 523-539
    • Plummer, M.1
  • 73
    • 84914179053 scopus 로고    scopus 로고
    • R Foundation for Statistical Computing, Vienna, Austria
    • R Core Team. 2013. R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. http://www.r-project.org
    • (2013) R: A Language and Environment for Statistical Computing
  • 77
    • 0000120766 scopus 로고
    • Estimating the dimension of a model
    • Schwarz, G. E. 1978. Estimating the dimension of a model. Annals of Statistics 6:461-464.
    • (1978) Annals of Statistics , vol.6 , pp. 461-464
    • Schwarz, G.E.1
  • 78
    • 84865761131 scopus 로고    scopus 로고
    • Hidden dangers of specifying noninformative priors
    • Seaman, J. W., III, J. W. Seaman, Jr., and J. D. Stamey. 2012. Hidden dangers of specifying noninformative priors. American Statistician 66:77-84.
    • (2012) American Statistician , vol.66 , pp. 77-84
    • Seaman, J.W.1    Seaman, J.W.2    Stamey, J.D.3
  • 80
  • 81
    • 0000859675 scopus 로고
    • An asymptotic equivalence of choice of model cross-validation and Akaike's criterion
    • Stone, M. 1977. An asymptotic equivalence of choice of model cross-validation and Akaike's criterion. Journal of the Royal Statistical Society B 36:44-47.
    • (1977) Journal of the Royal Statistical Society B , vol.36 , pp. 44-47
    • Stone, M.1
  • 82
    • 34548083281 scopus 로고    scopus 로고
    • The free lunch is over: A fundamental turn toward concurrency in software
    • Sutter, H. 2005. The free lunch is over: a fundamental turn toward concurrency in software. Dr. Dobbs Report 30 (3).
    • (2005) Dr. Dobbs Report , vol.30 , Issue.3
    • Sutter, H.1
  • 85
    • 84874387472 scopus 로고    scopus 로고
    • A survey of Bayesian predictive methods for model assessment, selection and comparison
    • Vehtari, A., and J. Ojanen. 2012. A survey of Bayesian predictive methods for model assessment, selection and comparison. Statistics Surveys 6:142-228.
    • (2012) Statistics Surveys , vol.6 , pp. 142-228
    • Vehtari, A.1    Ojanen, J.2
  • 86
    • 79551500649 scopus 로고    scopus 로고
    • Asymptotic equivalence of Bayes crossvalidation and widely applicable information criterion in singular learning theory
    • Watanabe, S. 2010. Asymptotic equivalence of Bayes crossvalidation and widely applicable information criterion in singular learning theory. Journal of Machine Learning Research 11:3571-3594.
    • (2010) Journal of Machine Learning Research , vol.11 , pp. 3571-3594
    • Watanabe, S.1
  • 87
    • 84876235301 scopus 로고    scopus 로고
    • A widely applicable Bayesian information criterion
    • Watanabe, S. 2013. A widely applicable Bayesian information criterion. Journal of Machine Learning Research 14:867-897.
    • (2013) Journal of Machine Learning Research , vol.14 , pp. 867-897
    • Watanabe, S.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.