-
2
-
-
77956264822
-
Predictive likelihood for Bayesian model selection and averaging
-
Ando, T., and R. Tsay. 2010. Predictive likelihood for Bayesian model selection and averaging. International Journal of Forecasting 26:744-763.
-
(2010)
International Journal of Forecasting
, vol.26
, pp. 744-763
-
-
Ando, T.1
Tsay, R.2
-
3
-
-
84890140417
-
Bayesian multimodel inference by RJMCMC: A Gibbs sampling approach
-
Barker, R. J., and W. A. Link. 2013. Bayesian multimodel inference by RJMCMC: A Gibbs sampling approach. American Statistician 67:150-156.
-
(2013)
American Statistician
, vol.67
, pp. 150-156
-
-
Barker, R.J.1
Link, W.A.2
-
5
-
-
0000626524
-
Expected information as expected utility
-
Bernardo, J. M. 1979. Expected information as expected utility. Annals of Statistics 7:686-690.
-
(1979)
Annals of Statistics
, vol.7
, pp. 686-690
-
-
Bernardo, J.M.1
-
6
-
-
84981748011
-
-
John Wiley, New York, New York, USA
-
Bernardo, J. M., and A. F. M. Smith. 1994. Bayesian theory. John Wiley, New York, New York, USA.
-
(1994)
Bayesian Theory
-
-
Bernardo, J.M.1
Smith, A.F.M.2
-
7
-
-
84883992559
-
-
Princeton University Press, Princeton, New Jersey, USA
-
Bolker, B. 2008. Ecological models and data in R. Princeton University Press, Princeton, New Jersey, USA.
-
(2008)
Ecological Models and Data in R
-
-
Bolker, B.1
-
8
-
-
65349182397
-
Learning hierarchical models: Advice for the rest of us
-
Bolker, B. 2009. Learning hierarchical models: advice for the rest of us. Ecological Applications 19:588-592.
-
(2009)
Ecological Applications
, vol.19
, pp. 588-592
-
-
Bolker, B.1
-
9
-
-
84871951819
-
Consistent highdimensional Bayesian variable selection via penalized credible regions
-
Bondell, H. D., and B. J. Reich. 2012. Consistent highdimensional Bayesian variable selection via penalized credible regions. Journal of the American Statistical Association 107:1610-1624.
-
(2012)
Journal of the American Statistical Association
, vol.107
, pp. 1610-1624
-
-
Bondell, H.D.1
Reich, B.J.2
-
12
-
-
70450277983
-
Deviance information criteria for missing data models
-
Celeux, G., F. Forbes, C. P. Robert, and D. M. Titterington. 2006. Deviance information criteria for missing data models. Bayesian Analysis 1:651-674.
-
(2006)
Bayesian Analysis
, vol.1
, pp. 651-674
-
-
Celeux, G.1
Forbes, F.2
Robert, C.P.3
Titterington, D.M.4
-
13
-
-
12944287801
-
Why environmental scientists are becoming Bayesians
-
Clark, J. S. 2005. Why environmental scientists are becoming Bayesians. Ecology Letters 8:2-14.
-
(2005)
Ecology Letters
, vol.8
, pp. 2-14
-
-
Clark, J.S.1
-
16
-
-
24944555208
-
Bayesian model choice based on Monte Carlo estimates of posterior model probabilities
-
Congdon, P. 2006. Bayesian model choice based on Monte Carlo estimates of posterior model probabilities. Computational Statistics and Data Analysis 50:346-357.
-
(2006)
Computational Statistics and Data Analysis
, vol.50
, pp. 346-357
-
-
Congdon, P.1
-
17
-
-
65349116559
-
Accounting for uncertainty in ecological analysis: The strengths and limitations of hierarchical statistical modeling
-
Cressie, N., C. A. Calder, J. S. Clark, J. M. Ver Hoef, and C. K. Wikle. 2009. Accounting for uncertainty in ecological analysis: the strengths and limitations of hierarchical statistical modeling. Ecological Applications 19:553-570.
-
(2009)
Ecological Applications
, vol.19
, pp. 553-570
-
-
Cressie, N.1
Calder, C.A.2
Clark, J.S.3
Ver Hoef, J.M.4
Wikle, C.K.5
-
18
-
-
70450231574
-
Predictive model assessment for count data
-
Czado, C., T. Gneiting, and L. Held. 2009. Predictive model assessment for count data. Biometrics 65:1254-1261.
-
(2009)
Biometrics
, vol.65
, pp. 1254-1261
-
-
Czado, C.1
Gneiting, T.2
Held, L.3
-
19
-
-
77954245731
-
Alternative regression methods are not considered in Murtaugh (2009) or by ecologists in general
-
Dahlgren, J. P. 2010. Alternative regression methods are not considered in Murtaugh (2009) or by ecologists in general. Ecology Letters 13:E7-E9.
-
(2010)
Ecology Letters
, vol.13
, pp. E7-E9
-
-
Dahlgren, J.P.1
-
20
-
-
0343198394
-
On Bayesian model and variable selection using MCMC
-
Department of Statistics, Athens University of Economics and Business, Athens, Greece
-
Dellaportas, P., J. J. Forster, and I. Ntzoufras. 1997. On Bayesian model and variable selection using MCMC. Technical report. Department of Statistics, Athens University of Economics and Business, Athens, Greece.
-
(1997)
Technical Report
-
-
Dellaportas, P.1
Forster, J.J.2
Ntzoufras, I.3
-
21
-
-
77955459355
-
Models for inference in dynamic metacommunity systems
-
Dorazio, R. M., M. Kery, J. A. Royle, and M. Plattner. 2010. Models for inference in dynamic metacommunity systems. Ecology 91:2466-2475.
-
(2010)
Ecology
, vol.91
, pp. 2466-2475
-
-
Dorazio, R.M.1
Kery, M.2
Royle, J.A.3
Plattner, M.4
-
22
-
-
84871007470
-
A Gibbs sampler for Bayesian analysis of site-occupancy data
-
Dorazio, R. M., and D. T. Rodriquez. 2012. A Gibbs sampler for Bayesian analysis of site-occupancy data. Methods in Ecology and Evolution 3:1093-1098.
-
(2012)
Methods in Ecology and Evolution
, vol.3
, pp. 1093-1098
-
-
Dorazio, R.M.1
Rodriquez, D.T.2
-
23
-
-
83155180509
-
A predictive model of avian natal dispersal distance provides prior information for investigating response to landscape change
-
Garrard, G. E., M. A. McCarthy, P. A. Vesk, J. Q. Radford, and A. F. Bennett. 2012. A predictive model of avian natal dispersal distance provides prior information for investigating response to landscape change. Journal of Animal Ecology 81:14-23.
-
(2012)
Journal of Animal Ecology
, vol.81
, pp. 14-23
-
-
Garrard, G.E.1
McCarthy, M.A.2
Vesk, P.A.3
Radford, J.Q.4
Bennett, A.F.5
-
25
-
-
0002799511
-
Model choice: A minimum posterior predictive loss approach
-
Gelfand, A. E., and S. K. Ghosh. 1998. Model choice: a minimum posterior predictive loss approach. Biometrika 85:1-13.
-
(1998)
Biometrika
, vol.85
, pp. 1-13
-
-
Gelfand, A.E.1
Ghosh, S.K.2
-
27
-
-
0004012196
-
-
Third edition. Chapman and Hall/CRC, Boca Raton, Florida, USA
-
Gelman, A., J. B. Carlin, H. S. Stern, D. B. Dunson, A. Vehtari, and D. B. Rubin. 2014a. Bayesian data analysis. Third edition. Chapman and Hall/CRC, Boca Raton, Florida, USA.
-
(2014)
Bayesian Data Analysis
-
-
Gelman, A.1
Carlin, J.B.2
Stern, H.S.3
Dunson, D.B.4
Vehtari, A.5
Rubin, D.B.6
-
31
-
-
80054681355
-
Rao-Blackwellization for Bayesian variable selection and model averaging in linear and binary regression: A novel data augmentation approach
-
Ghosh, J., and M. A. Clyde. 2011. Rao-Blackwellization for Bayesian variable selection and model averaging in linear and binary regression: a novel data augmentation approach. Journal of the American Statistical Association 106:1041-1052.
-
(2011)
Journal of the American Statistical Association
, vol.106
, pp. 1041-1052
-
-
Ghosh, J.1
Clyde, M.A.2
-
33
-
-
33947274775
-
Strictly proper scoring rules, prediction, and estimation
-
Gneiting, T., and A. E. Raftery. 2007. Strictly proper scoring rules, prediction, and estimation. Journal of the American Statistical Association 102:359-378.
-
(2007)
Journal of the American Statistical Association
, vol.102
, pp. 359-378
-
-
Gneiting, T.1
Raftery, A.E.2
-
34
-
-
0035591051
-
On the relationship between Markov chain Monte Carlo methods for model uncertainty
-
Godsill, S. J. 2001. On the relationship between Markov chain Monte Carlo methods for model uncertainty. Journal of Computational and Statistical Graphics 10:230-248.
-
(2001)
Journal of Computational and Statistical Graphics
, vol.10
, pp. 230-248
-
-
Godsill, S.J.1
-
35
-
-
4544247492
-
-
Second edition. Sinauer Associates, Sunderland, Massachusetts, USA
-
Gotelli, N. J., and A. M. Ellison. 2012. A primer of ecological statistics. Second edition. Sinauer Associates, Sunderland, Massachusetts, USA.
-
(2012)
A Primer of Ecological Statistics
-
-
Gotelli, N.J.1
Ellison, A.M.2
-
36
-
-
1342330862
-
Confronting multicollinearity in ecological multiple regression
-
Graham, M. H. 2003. Confronting multicollinearity in ecological multiple regression. Ecology 84:2809-2815.
-
(2003)
Ecology
, vol.84
, pp. 2809-2815
-
-
Graham, M.H.1
-
37
-
-
77956889087
-
Reversible jump Markov chain Monte Carlo computation and Bayesian model determination
-
Green, P. J. 1995. Reversible jump Markov chain Monte Carlo computation and Bayesian model determination. Biometrika 82:711-732.
-
(1995)
Biometrika
, vol.82
, pp. 711-732
-
-
Green, P.J.1
-
38
-
-
84864003110
-
Model choice using reversible jump Markov chain Monte Carlo
-
Hastie, D. I., and P. J. Green. 2012. Model choice using reversible jump Markov chain Monte Carlo. Statistica Neerlandica 66:309-338.
-
(2012)
Statistica Neerlandica
, vol.66
, pp. 309-338
-
-
Hastie, D.I.1
Green, P.J.2
-
39
-
-
0003684449
-
-
Second edition. Springer, New York, New York, USA
-
Hastie, T., R. Tibshirani, and J. Friedman. 2009. Elements of statistical learning: data mining, inference, and prediction. Second edition. Springer, New York, New York, USA.
-
(2009)
Elements of Statistical Learning: Data Mining, Inference, and Prediction
-
-
Hastie, T.1
Tibshirani, R.2
Friedman, J.3
-
40
-
-
79955479019
-
-
T. Kneib and G. Tutz, editors. Statistical modelling and regression structures: festschrift in honour of Ludwig Fahrmeir. Springer, New York, New York, USA
-
Held, L., B. Schrodle, and H. Rue. 2010. Posterior and crossvalidatory predictive checks: a comparison of MCMC and INLA. Pages 91-109 in T. Kneib and G. Tutz, editors. Statistical modelling and regression structures: festschrift in honour of Ludwig Fahrmeir. Springer, New York, New York, USA.
-
(2010)
Posterior and Crossvalidatory Predictive Checks: A Comparison of MCMC and INLA
, pp. 91-109
-
-
Held, L.1
Schrodle, B.2
Rue, H.3
-
41
-
-
70349871297
-
New tools for insight from ecological models and data
-
Hobbs, N. T. 2009. New tools for insight from ecological models and data. Ecological Applications 19:551-552.
-
(2009)
Ecological Applications
, vol.19
, pp. 551-552
-
-
Hobbs, N.T.1
-
42
-
-
84944731005
-
-
In press, Princeton University Press, Princeton, New jersey, USA
-
Hobbs, N. T., and M. B. Hooten. In press. Bayesian models: a statistical primer for ecologists. Princeton University Press, Princeton, New jersey, USA.
-
Bayesian Models: A Statistical Primer for Ecologists
-
-
Hobbs, N.T.1
Hooten, M.B.2
-
43
-
-
0001259111
-
Bayesian model averaging: A tutorial
-
Hoeting, J. A., D. Madigan, A. E. Raftery, and C. T. Volinsky. 1999. Bayesian model averaging: a tutorial. Statistical Science 14:382-417.
-
(1999)
Statistical Science
, vol.14
, pp. 382-417
-
-
Hoeting, J.A.1
Madigan, D.2
Raftery, A.E.3
Volinsky, C.T.4
-
44
-
-
0242592267
-
Predicting the spatial distribution of ground flora on large domains using a hierarchical Bayesian model
-
Hooten, M. B., D. R. Larsen, and C. K. Wikle. 2003. Predicting the spatial distribution of ground flora on large domains using a hierarchical Bayesian model. Landscape Ecology 18:487-502.
-
(2003)
Landscape Ecology
, vol.18
, pp. 487-502
-
-
Hooten, M.B.1
Larsen, D.R.2
Wikle, C.K.3
-
45
-
-
83555177267
-
Assessing first-order emulator inference for physical parameters in nonlinear mechanistic models
-
Hooten, M. B., W. B. Leeds, J. Fiechter, and C. K. Wikle. 2011. Assessing first-order emulator inference for physical parameters in nonlinear mechanistic models. Journal of Agricultural, Biological and Environmental Statistics 16:475-494.
-
(2011)
Journal of Agricultural, Biological and Environmental Statistics
, vol.16
, pp. 475-494
-
-
Hooten, M.B.1
Leeds, W.B.2
Fiechter, J.3
Wikle, C.K.4
-
46
-
-
0003414592
-
-
Third edition. Oxford University Press, Oxford, UK
-
Jeffreys, H. 1961. Theory of probability. Third edition. Oxford University Press, Oxford, UK.
-
(1961)
Theory of Probability
-
-
Jeffreys, H.1
-
47
-
-
84876768817
-
Spatial occupancy models for large data sets
-
Johnson, D. S., P. B. Conn, M. B. Hooten, J. Ray, and B. Pond. 2013. Spatial occupancy models for large data sets. Ecology 94:801-808.
-
(2013)
Ecology
, vol.94
, pp. 801-808
-
-
Johnson, D.S.1
Conn, P.B.2
Hooten, M.B.3
Ray, J.4
Pond, B.5
-
48
-
-
80755125967
-
Bayesian multimodel inference for geostatistical regression models
-
Johnson, D. S., and J. A. Hoeting. 2011. Bayesian multimodel inference for geostatistical regression models. PLoS ONE 6:e25677.
-
(2011)
PLoS ONE
, vol.6
, pp. e25677
-
-
Johnson, D.S.1
Hoeting, J.A.2
-
52
-
-
17944393449
-
Monitoring programs need to take into account imperfect species detectability
-
Kery, M., and H. Schmid. 2004. Monitoring programs need to take into account imperfect species detectability. Basic and Applied Ecology 5:65-73.
-
(2004)
Basic and Applied Ecology
, vol.5
, pp. 65-73
-
-
Kery, M.1
Schmid, H.2
-
55
-
-
78049484065
-
Penalized regression, standard errors, and Bayesian lassos
-
Kyung, M., J. Gill, M. Ghosh, and G. Casella. 2010. Penalized regression, standard errors, and Bayesian lassos. Bayesian Analysis 5:369-412.
-
(2010)
Bayesian Analysis
, vol.5
, pp. 369-412
-
-
Kyung, M.1
Gill, J.2
Ghosh, M.3
Casella, G.4
-
57
-
-
0004029130
-
-
Springer, New York, New York, USA
-
Lehmann, E. L., and G. Casella. 1998. Theory of point estimation. Springer, New York, New York, USA.
-
(1998)
Theory of Point Estimation
-
-
Lehmann, E.L.1
Casella, G.2
-
58
-
-
33845360384
-
Model weights and the foundations of multimodel inference
-
Link, W. A., and R. J. Barker. 2006. Model weights and the foundations of multimodel inference. Ecology 87:2626-2635.
-
(2006)
Ecology
, vol.87
, pp. 2626-2635
-
-
Link, W.A.1
Barker, R.J.2
-
60
-
-
0344585053
-
Estimating site occupancy, colonization, and local extinction when a species is detected imperfectly
-
MacKenzie, D. I., J. D. Nichols, J. E. Hines, M. G. Knutson, and A. B. Franklin. 2003. Estimating site occupancy, colonization, and local extinction when a species is detected imperfectly. Ecology 84:2200-2255.
-
(2003)
Ecology
, vol.84
, pp. 2200-2255
-
-
MacKenzie, D.I.1
Nichols, J.D.2
Hines, J.E.3
Knutson, M.G.4
Franklin, A.B.5
-
61
-
-
0000989596
-
Estimating site occupancy rates when detection probabilities are less than one
-
MacKenzie, D. I., J. D. Nichols, G. B. Lachman, S. Droege, J. A. Royle, and C. A. Langtimm. 2002. Estimating site occupancy rates when detection probabilities are less than one. Ecology 83:2248-2255.
-
(2002)
Ecology
, vol.83
, pp. 2248-2255
-
-
MacKenzie, D.I.1
Nichols, J.D.2
Lachman, G.B.3
Droege, S.4
Royle, J.A.5
Langtimm, C.A.6
-
62
-
-
31344465822
-
-
Elsevier, Amsterdam, The Netherlands
-
MacKenzie, D. I., J. D. Nichols, J. A. Royle, K. H. Pollock, L. L. Bailey, and J. E. Hines. 2006. Occupancy estimation and modeling. Elsevier, Amsterdam, The Netherlands.
-
(2006)
Occupancy Estimation and Modeling
-
-
MacKenzie, D.I.1
Nichols, J.D.2
Royle, J.A.3
Pollock, K.H.4
Bailey, L.L.5
Hines, J.E.6
-
63
-
-
84950945692
-
Model selection and accounting for model uncertainty in graphical models using Occam's window
-
Madigan, D., and A. E. Raftery. 1994. Model selection and accounting for model uncertainty in graphical models using Occam's window. Journal of the American Statistical Association 89:1535-1546.
-
(1994)
Journal of the American Statistical Association
, vol.89
, pp. 1535-1546
-
-
Madigan, D.1
Raftery, A.E.2
-
64
-
-
27444435432
-
Zero-tolerance in ecology: Improving ecological inference by modelling the source of zero observations
-
Martin, T. G., B. A. Wintle, J. R. Rhodes, P. M. Kuhnert, S. A. Field, S. J. Low-Choy, A. J. Tyre, and H. Possingham. 2005. Zero-tolerance in ecology: improving ecological inference by modelling the source of zero observations. Ecology Letters 8:1235-1246.
-
(2005)
Ecology Letters
, vol.8
, pp. 1235-1246
-
-
Martin, T.G.1
Wintle, B.A.2
Rhodes, J.R.3
Kuhnert, P.M.4
Field, S.A.5
Low-Choy, S.J.6
Tyre, A.J.7
Possingham, H.8
-
66
-
-
77949297716
-
Improved estimation of site occupancy using penalized likelihood
-
Moreno, M., and S. R. Lele. 2010. Improved estimation of site occupancy using penalized likelihood. Ecology 91:341-346.
-
(2010)
Ecology
, vol.91
, pp. 341-346
-
-
Moreno, M.1
Lele, S.R.2
-
67
-
-
69249230467
-
A review of Bayesian variable selection methods: What, how and which
-
O'Hara, R. B., and M. J. Sillanpaa. 2009. A review of Bayesian variable selection methods: What, how and which. Bayesian Analysis 4:85-118.
-
(2009)
Bayesian Analysis
, vol.4
, pp. 85-118
-
-
O'Hara, R.B.1
Sillanpaa, M.J.2
-
68
-
-
77952563168
-
Explaining variational approximations
-
Omerod, J. T., and M. P. Wand. 2010. Explaining variational approximations. American Statistician 64:140-153.
-
(2010)
American Statistician
, vol.64
, pp. 140-153
-
-
Omerod, J.T.1
Wand, M.P.2
-
70
-
-
0011292458
-
The conditional predictive ordinate for the normal distribution
-
Pettit, L. I. 1990. The conditional predictive ordinate for the normal distribution. Journal of the American Statistical Association 52:175-184.
-
(1990)
Journal of the American Statistical Association
, vol.52
, pp. 175-184
-
-
Pettit, L.I.1
-
72
-
-
45849088346
-
Penalized loss functions for Bayesian model comparison
-
Plummer, M. 2008. Penalized loss functions for Bayesian model comparison. Biostatistics 9:523-539.
-
(2008)
Biostatistics
, vol.9
, pp. 523-539
-
-
Plummer, M.1
-
73
-
-
84914179053
-
-
R Foundation for Statistical Computing, Vienna, Austria
-
R Core Team. 2013. R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. http://www.r-project.org
-
(2013)
R: A Language and Environment for Statistical Computing
-
-
-
77
-
-
0000120766
-
Estimating the dimension of a model
-
Schwarz, G. E. 1978. Estimating the dimension of a model. Annals of Statistics 6:461-464.
-
(1978)
Annals of Statistics
, vol.6
, pp. 461-464
-
-
Schwarz, G.E.1
-
78
-
-
84865761131
-
Hidden dangers of specifying noninformative priors
-
Seaman, J. W., III, J. W. Seaman, Jr., and J. D. Stamey. 2012. Hidden dangers of specifying noninformative priors. American Statistician 66:77-84.
-
(2012)
American Statistician
, vol.66
, pp. 77-84
-
-
Seaman, J.W.1
Seaman, J.W.2
Stamey, J.D.3
-
79
-
-
0036435040
-
Bayesian measures of model complexity and fit
-
Spiegelhalter, D. J., N. G. Best, B. P. Carlin, and A. Van Der Line. 2002. Bayesian measures of model complexity and fit. Journal of the Royal Statistical Society B 64:583-639.
-
(2002)
Journal of the Royal Statistical Society B
, vol.64
, pp. 583-639
-
-
Spiegelhalter, D.J.1
Best, N.G.2
Carlin, B.P.3
Van Der Line, A.4
-
81
-
-
0000859675
-
An asymptotic equivalence of choice of model cross-validation and Akaike's criterion
-
Stone, M. 1977. An asymptotic equivalence of choice of model cross-validation and Akaike's criterion. Journal of the Royal Statistical Society B 36:44-47.
-
(1977)
Journal of the Royal Statistical Society B
, vol.36
, pp. 44-47
-
-
Stone, M.1
-
82
-
-
34548083281
-
The free lunch is over: A fundamental turn toward concurrency in software
-
Sutter, H. 2005. The free lunch is over: a fundamental turn toward concurrency in software. Dr. Dobbs Report 30 (3).
-
(2005)
Dr. Dobbs Report
, vol.30
, Issue.3
-
-
Sutter, H.1
-
85
-
-
84874387472
-
A survey of Bayesian predictive methods for model assessment, selection and comparison
-
Vehtari, A., and J. Ojanen. 2012. A survey of Bayesian predictive methods for model assessment, selection and comparison. Statistics Surveys 6:142-228.
-
(2012)
Statistics Surveys
, vol.6
, pp. 142-228
-
-
Vehtari, A.1
Ojanen, J.2
-
86
-
-
79551500649
-
Asymptotic equivalence of Bayes crossvalidation and widely applicable information criterion in singular learning theory
-
Watanabe, S. 2010. Asymptotic equivalence of Bayes crossvalidation and widely applicable information criterion in singular learning theory. Journal of Machine Learning Research 11:3571-3594.
-
(2010)
Journal of Machine Learning Research
, vol.11
, pp. 3571-3594
-
-
Watanabe, S.1
-
87
-
-
84876235301
-
A widely applicable Bayesian information criterion
-
Watanabe, S. 2013. A widely applicable Bayesian information criterion. Journal of Machine Learning Research 14:867-897.
-
(2013)
Journal of Machine Learning Research
, vol.14
, pp. 867-897
-
-
Watanabe, S.1
|