메뉴 건너뛰기




Volumn 11, Issue 4, 2017, Pages 1212-1229

Effect of visco-elastic silk–chitosan microcomposite scaffolds on matrix deposition and biomechanical functionality for cartilage tissue engineering

Author keywords

cartilage; chitosan; extracellular matrix; silk; tissue engineering; visco elastic

Indexed keywords

BIOMATERIALS; BODY FLUIDS; CHITOSAN; COMPOSITE MATERIALS; COPYRIGHTS; ELASTICITY; REINFORCEMENT; SCAFFOLDS (BIOLOGY); SILK;

EID: 84926631378     PISSN: 19326254     EISSN: 19327005     Source Type: Journal    
DOI: 10.1002/term.2024     Document Type: Article
Times cited : (29)

References (57)
  • 1
    • 75449113413 scopus 로고    scopus 로고
    • Chitosan/polyester-based scaffolds for cartilage tissue engineering: assessment of extracellular matrix formation
    • Alves da Silva ML, Crawford A, Mundy JM et al. 2010; Chitosan/polyester-based scaffolds for cartilage tissue engineering: assessment of extracellular matrix formation. Acta Biomater 6: 1149–1157.
    • (2010) Acta Biomater , vol.6 , pp. 1149-1157
    • Alves da Silva, M.L.1    Crawford, A.2    Mundy, J.M.3
  • 2
    • 0000951118 scopus 로고
    • Conformational characterization of Bombyx mori silk fibroin in the solid state by high-frequency carbon-13 crosspolarization–magic angle spinning NMR, X-ray diffraction, and infrared spectroscopy
    • Asakura T, Tabeta R, Saito H 1985; Conformational characterization of Bombyx mori silk fibroin in the solid state by high-frequency carbon-13 crosspolarization–magic angle spinning NMR, X-ray diffraction, and infrared spectroscopy. Macromolecules 18: 1841–1845.
    • (1985) Macromolecules , vol.18 , pp. 1841-1845
    • Asakura, T.1    Tabeta, R.2    Saito, H.3
  • 3
    • 45849093211 scopus 로고    scopus 로고
    • Effects of chondrogenic and osteogenic regulatory factors on composite constructs grown using human mesenchymal stem cells, silk scaffolds and bioreactors
    • Augst A, Marolt D, Freed LE et al. 2008; Effects of chondrogenic and osteogenic regulatory factors on composite constructs grown using human mesenchymal stem cells, silk scaffolds and bioreactors. J R Soc Interface 5: 929–939.
    • (2008) J R Soc Interface , vol.5 , pp. 929-939
    • Augst, A.1    Marolt, D.2    Freed, L.E.3
  • 4
    • 84856249139 scopus 로고    scopus 로고
    • Chondrogenic differentiation of rat MSCs on porous scaffolds of silk fibroin/chitosan blends
    • Bhardwaj N, Kundu SC 2012; Chondrogenic differentiation of rat MSCs on porous scaffolds of silk fibroin/chitosan blends. Biomaterials 33: 2848–2857.
    • (2012) Biomaterials , vol.33 , pp. 2848-2857
    • Bhardwaj, N.1    Kundu, S.C.2
  • 5
    • 79957879066 scopus 로고    scopus 로고
    • Potential of 3D tissue constructs engineered from bovine chondrocytes/silk fibroin-chitosan for in vitro cartilage tissue engineering
    • Bhardwaj N, Nguyen QT, Chen AC et al. 2011; Potential of 3D tissue constructs engineered from bovine chondrocytes/silk fibroin-chitosan for in vitro cartilage tissue engineering. Biomaterials 32: 5773–5781.
    • (2011) Biomaterials , vol.32 , pp. 5773-5781
    • Bhardwaj, N.1    Nguyen, Q.T.2    Chen, A.C.3
  • 6
    • 84929129139 scopus 로고    scopus 로고
    • Tissue engineering strategies to study cartilage development, degeneration and regeneration
    • Bhattacharjee M, Coburn J, Centola M et al. 2014; Tissue engineering strategies to study cartilage development, degeneration and regeneration. Adv Drug Deliv Rev •••; •••–•••; DOI: 10.1016/j.addr.2014.08.010.
    • (2014) Adv Drug Deliv Rev
    • Bhattacharjee, M.1    Coburn, J.2    Centola, M.3
  • 7
    • 67049087879 scopus 로고    scopus 로고
    • Polysaccharide-based polyelectrolyte complex nanoparticles from chitosan, heparin, and hyaluronan
    • Boddohi S, Moore N, Johnson PA et al. 2009; Polysaccharide-based polyelectrolyte complex nanoparticles from chitosan, heparin, and hyaluronan. Biomacromolecules 10: 1402–1409.
    • (2009) Biomacromolecules , vol.10 , pp. 1402-1409
    • Boddohi, S.1    Moore, N.2    Johnson, P.A.3
  • 8
    • 84856291594 scopus 로고    scopus 로고
    • The influence of construct scale on the composition and functional properties of cartilaginous tissues engineered using bone marrow-derived mesenchymal stem cells
    • Buckley CT, Meyer EG, Kelly DJ. 2012; The influence of construct scale on the composition and functional properties of cartilaginous tissues engineered using bone marrow-derived mesenchymal stem cells. Tissue Eng A 18: 382–396.
    • (2012) Tissue Eng A , vol.18 , pp. 382-396
    • Buckley, C.T.1    Meyer, E.G.2    Kelly, D.J.3
  • 9
    • 84873634183 scopus 로고    scopus 로고
    • Enhanced redifferentiation of chondrocytes on microperiodic silk/gelatin scaffolds: toward tailor-made tissue engineering
    • Das S, Pati F, Chameettachal S et al. 2013; Enhanced redifferentiation of chondrocytes on microperiodic silk/gelatin scaffolds: toward tailor-made tissue engineering. Biomacromolecules 14: 311–321.
    • (2013) Biomacromolecules , vol.14 , pp. 311-321
    • Das, S.1    Pati, F.2    Chameettachal, S.3
  • 10
    • 0030114189 scopus 로고    scopus 로고
    • Chitosan–chondroitin sulphate and chitosan–hyaluronate polyelectrolyte complexes: physico-chemical aspects
    • Denuziere A, Ferrief D, Domard A. 1996; Chitosan–chondroitin sulphate and chitosan–hyaluronate polyelectrolyte complexes: physico-chemical aspects. Carbohyd Polym 29: 311–323.
    • (1996) Carbohyd Polym , vol.29 , pp. 311-323
    • Denuziere, A.1    Ferrief, D.2    Domard, A.3
  • 11
    • 0032127562 scopus 로고    scopus 로고
    • Chitosan–chondroitin sulfate and chitosan–hyaluronate polyelectrolyte complexes: biological properties
    • Denuziere A, Ferrier D, Damour O et al. 1998; Chitosan–chondroitin sulfate and chitosan–hyaluronate polyelectrolyte complexes: biological properties. Biomaterials 19: 1275–1285.
    • (1998) Biomaterials , vol.19 , pp. 1275-1285
    • Denuziere, A.1    Ferrier, D.2    Damour, O.3
  • 12
    • 0025357111 scopus 로고
    • Protein secondary structures in water from second derivative amide I infrared spectra
    • Dong A, Huang P, Caughey WS. 1990; Protein secondary structures in water from second derivative amide I infrared spectra. Biochemistry 29: 3303–3308.
    • (1990) Biochemistry , vol.29 , pp. 3303-3308
    • Dong, A.1    Huang, P.2    Caughey, W.S.3
  • 13
    • 77957703739 scopus 로고    scopus 로고
    • Viscoelastic deformation of articular cartilage during impact loading
    • Edelsten L, Jeffrey JE, Burgina LV et al. 2010; Viscoelastic deformation of articular cartilage during impact loading. Soft Matter 6: 5206–5212.
    • (2010) Soft Matter , vol.6 , pp. 5206-5212
    • Edelsten, L.1    Jeffrey, J.E.2    Burgina, L.V.3
  • 14
    • 0022552896 scopus 로고
    • Improved quantitation and discrimination of sulphated glycosaminoglycans by use of dimethylmethylene blue
    • Farndale RW, Buttle DJ, Barrett AJ. 1986; Improved quantitation and discrimination of sulphated glycosaminoglycans by use of dimethylmethylene blue. Biochim Biophys Acta 883: 173–177.
    • (1986) Biochim Biophys Acta , vol.883 , pp. 173-177
    • Farndale, R.W.1    Buttle, D.J.2    Barrett, A.J.3
  • 15
    • 84856023838 scopus 로고    scopus 로고
    • Unexpected strength and toughness in chitosan–fibroin laminates inspired by insect cuticle
    • Fernandez JG, Ingber DE. 2012; Unexpected strength and toughness in chitosan–fibroin laminates inspired by insect cuticle. Adv Mater 24: 480–484.
    • (2012) Adv Mater , vol.24 , pp. 480-484
    • Fernandez, J.G.1    Ingber, D.E.2
  • 16
    • 70349267496 scopus 로고    scopus 로고
    • In vitro model of mesenchymal condensation during chondrogenic development
    • Ghosh S, Laha M, Mondal S et al. 2009; In vitro model of mesenchymal condensation during chondrogenic development. Biomaterials 30: 6530–6540.
    • (2009) Biomaterials , vol.30 , pp. 6530-6540
    • Ghosh, S.1    Laha, M.2    Mondal, S.3
  • 17
    • 47949108730 scopus 로고    scopus 로고
    • Direct-write assembly of microperiodic silk fibroin scaffolds for tissue engineering applications
    • Ghosh S, Parker ST, Wang X et al. 2008; Direct-write assembly of microperiodic silk fibroin scaffolds for tissue engineering applications. Adv Funct Mater 18: 1883–1889.
    • (2008) Adv Funct Mater , vol.18 , pp. 1883-1889
    • Ghosh, S.1    Parker, S.T.2    Wang, X.3
  • 18
    • 33748778466 scopus 로고    scopus 로고
    • Dynamic protein − water relationships during β-sheet formation
    • Hu X, Kaplan D, Cebe P. 2006; Dynamic protein − water relationships during β-sheet formation. Macromolecules 39: 6161–6170.
    • (2006) Macromolecules , vol.39 , pp. 6161-6170
    • Hu, X.1    Kaplan, D.2    Cebe, P.3
  • 19
    • 0033667559 scopus 로고    scopus 로고
    • Insight into protein structure and protein–ligand recognition by Fourier transform infrared spectroscopy
    • Jung C. 2000; Insight into protein structure and protein–ligand recognition by Fourier transform infrared spectroscopy. J Mol Recogn 13: 325–351.
    • (2000) J Mol Recogn , vol.13 , pp. 325-351
    • Jung, C.1
  • 20
    • 0021670472 scopus 로고
    • Fundamentals of fluid transport through cartilage in compression
    • Kwan MK, Lai WM, Mow VC. 1984; Fundamentals of fluid transport through cartilage in compression. Ann Biomed Eng 2: 537–558.
    • (1984) Ann Biomed Eng , vol.2 , pp. 537-558
    • Kwan, M.K.1    Lai, W.M.2    Mow, V.C.3
  • 21
    • 0035897733 scopus 로고    scopus 로고
    • Physical properties of silk fibroin/chitosan blend films
    • Kweon H, Ha HC, Um IC et al. 2011; Physical properties of silk fibroin/chitosan blend films. J Appl Polym Sci 80: 928–934.
    • (2011) J Appl Polym Sci , vol.80 , pp. 928-934
    • Kweon, H.1    Ha, H.C.2    Um, I.C.3
  • 22
    • 0034666750 scopus 로고    scopus 로고
    • Chitosan supports the expression of extracellular matrix proteins in human osteoblasts and chondrocytes
    • Lahiji A, Sohrabi A, Hungerford DS et al. 2000; Chitosan supports the expression of extracellular matrix proteins in human osteoblasts and chondrocytes. J Biomed Mater Res 51: 586–595.
    • (2000) J Biomed Mater Res , vol.51 , pp. 586-595
    • Lahiji, A.1    Sohrabi, A.2    Hungerford, D.S.3
  • 23
    • 0028815147 scopus 로고
    • Cell-mediated catabolism of aggrecan. Evidence that cleavage at the 'aggrecanase' site (Glu373–Ala374) is a primary event in proteolysis of the interglobular domain
    • Lark MW, Gordy JT, Weidner JR et al. 1995; Cell-mediated catabolism of aggrecan. Evidence that cleavage at the 'aggrecanase' site (Glu373–Ala374) is a primary event in proteolysis of the interglobular domain. J Biol Chem 270: 2550–2556.
    • (1995) J Biol Chem , vol.270 , pp. 2550-2556
    • Lark, M.W.1    Gordy, J.T.2    Weidner, J.R.3
  • 24
    • 79960622374 scopus 로고    scopus 로고
    • Mechanical properties of natural cartilage and tissue engineered constructs
    • Little CJ, Bawolin NK, Chen X. 2011; Mechanical properties of natural cartilage and tissue engineered constructs. Tissue Eng B Rev 17: 213–227.
    • (2011) Tissue Eng B Rev , vol.17 , pp. 213-227
    • Little, C.J.1    Bawolin, N.K.2    Chen, X.3
  • 25
    • 44949212944 scopus 로고    scopus 로고
    • Preparation and characterization of water-soluble N-alkylated chitosan
    • Ma G, Yang D, Zhou Y et al. 2008; Preparation and characterization of water-soluble N-alkylated chitosan. Carbohyd Polym 74: 121–126.
    • (2008) Carbohyd Polym , vol.74 , pp. 121-126
    • Ma, G.1    Yang, D.2    Zhou, Y.3
  • 26
    • 84872765833 scopus 로고    scopus 로고
    • Laminar silk scaffolds for aligned tissue fabrication
    • Mandal BB, Gil ES, Panilaitis B et al. 2013; Laminar silk scaffolds for aligned tissue fabrication. Macromol Biosci 13: 48–58.
    • (2013) Macromol Biosci , vol.13 , pp. 48-58
    • Mandal, B.B.1    Gil, E.S.2    Panilaitis, B.3
  • 27
    • 84861203750 scopus 로고    scopus 로고
    • High-strength silk protein scaffolds for bone repair
    • Mandal BB, Grinberg A, Gil ES et al. 2012; High-strength silk protein scaffolds for bone repair. Proc Natl Acad Sci U S A 109: 7699–7704.
    • (2012) Proc Natl Acad Sci U S A , vol.109 , pp. 7699-7704
    • Mandal, B.B.1    Grinberg, A.2    Gil, E.S.3
  • 28
    • 34247560123 scopus 로고    scopus 로고
    • The influence of charge density of chitosan in the compaction of the polyanions DNA and xanthan
    • Maurstad G, Danielsen S, Stokke BT. 2007; The influence of charge density of chitosan in the compaction of the polyanions DNA and xanthan. Biomacromolecules 8: 1124–1130.
    • (2007) Biomacromolecules , vol.8 , pp. 1124-1130
    • Maurstad, G.1    Danielsen, S.2    Stokke, B.T.3
  • 29
    • 70350050557 scopus 로고    scopus 로고
    • Concentration state dependence of the rheological and structural properties of reconstituted silk
    • Mo C, Holland C, Porter D et al. 2009; Concentration state dependence of the rheological and structural properties of reconstituted silk. Biomacromolecules 10: 2724–2728.
    • (2009) Biomacromolecules , vol.10 , pp. 2724-2728
    • Mo, C.1    Holland, C.2    Porter, D.3
  • 30
    • 1842738084 scopus 로고    scopus 로고
    • Effects of transforming growth factor-β on aggrecanase production and proteoglycan degradation by human chondrocytes in vitro
    • Moulharat N, Lesur C, Thomas M et al. 2004; Effects of transforming growth factor-β on aggrecanase production and proteoglycan degradation by human chondrocytes in vitro. Osteoarthr Cartilage 12: 296–305.
    • (2004) Osteoarthr Cartilage , vol.12 , pp. 296-305
    • Moulharat, N.1    Lesur, C.2    Thomas, M.3
  • 31
    • 33846677220 scopus 로고    scopus 로고
    • A biomimetic three-dimensional woven composite scaffold for functional tissue engineering of cartilage
    • Moutos FT, Freed LE, Guilak F. 2007; A biomimetic three-dimensional woven composite scaffold for functional tissue engineering of cartilage. Nat Mater 6: 162–167.
    • (2007) Nat Mater , vol.6 , pp. 162-167
    • Moutos, F.T.1    Freed, L.E.2    Guilak, F.3
  • 32
    • 24644485302 scopus 로고    scopus 로고
    • Variations in matrix composition and GAG fine structure among scaffolds for cartilage tissue engineering
    • Mouw JK, Case ND, Guldberg RE et al. 2005; Variations in matrix composition and GAG fine structure among scaffolds for cartilage tissue engineering. Osteoarthr Cartilage 13: 828–836.
    • (2005) Osteoarthr Cartilage , vol.13 , pp. 828-836
    • Mouw, J.K.1    Case, N.D.2    Guldberg, R.E.3
  • 33
    • 0036403676 scopus 로고    scopus 로고
    • Mechano-electrochemical properties of articular cartilage: their inhomogeneities and anisotropies
    • Mow VC, Guo XE. 2002; Mechano-electrochemical properties of articular cartilage: their inhomogeneities and anisotropies. Annu Rev Biomed Eng 4: 175–209.
    • (2002) Annu Rev Biomed Eng , vol.4 , pp. 175-209
    • Mow, V.C.1    Guo, X.E.2
  • 34
    • 0018983548 scopus 로고
    • Biphasic creep and stress relaxation of articular cartilage in compression? Theory and experiments
    • Mow VC, Kuei SC, Lai WM et al. 1980; Biphasic creep and stress relaxation of articular cartilage in compression? Theory and experiments. J Biomech Eng 102: 73–84.
    • (1980) J Biomech Eng , vol.102 , pp. 73-84
    • Mow, V.C.1    Kuei, S.C.2    Lai, W.M.3
  • 35
    • 84879661626 scopus 로고    scopus 로고
    • Matrix-embedded cytokines to simulate osteoarthritis-like cartilage microenvironments
    • Murab S, Chameettachal S, Bhattacharjee M et al. 2013; Matrix-embedded cytokines to simulate osteoarthritis-like cartilage microenvironments. Tissue Eng A 19: 1733–1753.
    • (2013) Tissue Eng A , vol.19 , pp. 1733-1753
    • Murab, S.1    Chameettachal, S.2    Bhattacharjee, M.3
  • 36
    • 84864023474 scopus 로고    scopus 로고
    • Cartilage-like mechanical properties of poly(ethylene glycol)–diacrylate hydrogels
    • Nguyen QT, Hwang Y, Chen AC et al. 2012; Cartilage-like mechanical properties of poly(ethylene glycol)–diacrylate hydrogels. Biomaterials 33: 6682–6690.
    • (2012) Biomaterials , vol.33 , pp. 6682-6690
    • Nguyen, Q.T.1    Hwang, Y.2    Chen, A.C.3
  • 37
    • 67649794831 scopus 로고    scopus 로고
    • Preparation of nanocomposite chitosan/silk fibroin blend films containing nanopore structures
    • Niamsa N, Srisuwan Y, Baimark Y et al. 2009; Preparation of nanocomposite chitosan/silk fibroin blend films containing nanopore structures. Carbohyd Polym 78: 60–65.
    • (2009) Carbohyd Polym , vol.78 , pp. 60-65
    • Niamsa, N.1    Srisuwan, Y.2    Baimark, Y.3
  • 38
    • 39149091352 scopus 로고    scopus 로고
    • Cartilage mechanical response under dynamic compression at physiological stress levels following collagenase digestion
    • Park S, Nicoll SB, Mauck RL et al. 2008; Cartilage mechanical response under dynamic compression at physiological stress levels following collagenase digestion. Ann Biomed Eng 36: 425–434.
    • (2008) Ann Biomed Eng , vol.36 , pp. 425-434
    • Park, S.1    Nicoll, S.B.2    Mauck, R.L.3
  • 39
    • 77953629181 scopus 로고    scopus 로고
    • Reinforcing silk scaffolds with silk particles
    • Rajkhowa R, Gil ES, Kluge J et al. 2010; Reinforcing silk scaffolds with silk particles. Macromol Biosci 10: 599–611.
    • (2010) Macromol Biosci , vol.10 , pp. 599-611
    • Rajkhowa, R.1    Gil, E.S.2    Kluge, J.3
  • 40
    • 12344296855 scopus 로고    scopus 로고
    • Enzymatic grafting of chitosan onto Bombyx mori silk fibroin: kinetic and IR vibrational studies
    • Sampaio S, Taddei P, Monti P et al. 2005; Enzymatic grafting of chitosan onto Bombyx mori silk fibroin: kinetic and IR vibrational studies. J Biotechnol 116: 21–33.
    • (2005) J Biotechnol , vol.116 , pp. 21-33
    • Sampaio, S.1    Taddei, P.2    Monti, P.3
  • 42
    • 33751290075 scopus 로고    scopus 로고
    • GAG-augmented polysaccharide hydrogel: a novel biocompatible and biodegradable material to support chondrogenesis
    • Sechriest VF, Miao YJ, Niyibizi C et al. 2000; GAG-augmented polysaccharide hydrogel: a novel biocompatible and biodegradable material to support chondrogenesis. J Biomed Mater Res 49: 534–541.
    • (2000) J Biomed Mater Res , vol.49 , pp. 534-541
    • Sechriest, V.F.1    Miao, Y.J.2    Niyibizi, C.3
  • 43
    • 70449731065 scopus 로고    scopus 로고
    • Comparative chondrogenesis of human cell sources in 3D scaffolds
    • Seda Tigli R, Ghosh S, Laha MM et al. 2009; Comparative chondrogenesis of human cell sources in 3D scaffolds. J Tissue Eng Regen Med 3: 348–360.
    • (2009) J Tissue Eng Regen Med , vol.3 , pp. 348-360
    • Seda Tigli, R.1    Ghosh, S.2    Laha, M.M.3
  • 44
    • 84859406085 scopus 로고    scopus 로고
    • Age impacts extracellular matrix metabolism in chondrocytes encapsulated in degradable hydrogels
    • Skaalure SC, Milligan IL, Bryant SJ. 2012; Age impacts extracellular matrix metabolism in chondrocytes encapsulated in degradable hydrogels. Biomed Mater 7: 024111.
    • (2012) Biomed Mater , vol.7 , pp. 024111
    • Skaalure, S.C.1    Milligan, I.L.2    Bryant, S.J.3
  • 45
    • 0029278085 scopus 로고
    • Dynamic behavior of a biphasic cartilage model under cyclic compressive loading
    • Suh JK, Li Z, Woo SL. 1995; Dynamic behavior of a biphasic cartilage model under cyclic compressive loading. J Biomech 28: 357–364.
    • (1995) J Biomech , vol.28 , pp. 357-364
    • Suh, J.K.1    Li, Z.2    Woo, S.L.3
  • 46
    • 0034672873 scopus 로고    scopus 로고
    • Application of chitosan-based polysaccharide biomaterials in cartilage tissue engineering: a review
    • Suh JK, Matthew HW. 2000; Application of chitosan-based polysaccharide biomaterials in cartilage tissue engineering: a review. Biomaterials 21: 2589–2598.
    • (2000) Biomaterials , vol.21 , pp. 2589-2598
    • Suh, J.K.1    Matthew, H.W.2
  • 47
    • 0036499471 scopus 로고    scopus 로고
    • The mechanism of aggrecan release from cartilage differs with tissue origin and the agent used to stimulate catabolism
    • Sztrolovics R, White RJ, Roughley PJ et al. 2002; The mechanism of aggrecan release from cartilage differs with tissue origin and the agent used to stimulate catabolism. Biochem J 362: 465–472.
    • (2002) Biochem J , vol.362 , pp. 465-472
    • Sztrolovics, R.1    White, R.J.2    Roughley, P.J.3
  • 48
    • 23944483501 scopus 로고    scopus 로고
    • Vibrational infrared conformational studies of model peptides representing the semicrystalline domains of Bombyx mori silk fibroin
    • Taddei P, Monti P. 2005; Vibrational infrared conformational studies of model peptides representing the semicrystalline domains of Bombyx mori silk fibroin. Biopolymers 78: 249–258.
    • (2005) Biopolymers , vol.78 , pp. 249-258
    • Taddei, P.1    Monti, P.2
  • 49
    • 38549097762 scopus 로고    scopus 로고
    • Biomechanical characterization of cartilages by a novel approach of blunt impact testing
    • Varga F, Drzik M, Handl M et al. 2007; Biomechanical characterization of cartilages by a novel approach of blunt impact testing. Physiol Res 56: S61–S68.
    • (2007) Physiol Res , vol.56 , pp. S61-S68
    • Varga, F.1    Drzik, M.2    Handl, M.3
  • 50
    • 33646518352 scopus 로고    scopus 로고
    • Cartilage tissue engineering with silk scaffolds and human articular chondrocytes
    • Wang Y, Blasioli DJ, Kim HJ et al. 2006; Cartilage tissue engineering with silk scaffolds and human articular chondrocytes. Biomaterials 27: 4434–4442.
    • (2006) Biomaterials , vol.27 , pp. 4434-4442
    • Wang, Y.1    Blasioli, D.J.2    Kim, H.J.3
  • 51
    • 80051699690 scopus 로고    scopus 로고
    • Chitosan/silk fibroin-based tissue-engineered graft seeded with adipose-derived stem cells enhances nerve regeneration in a rat model
    • Wei Y, Gong K, Zheng Z et al. 2011; Chitosan/silk fibroin-based tissue-engineered graft seeded with adipose-derived stem cells enhances nerve regeneration in a rat model. J Mater Sci Mater Med 22: 1947–1964.
    • (2011) J Mater Sci Mater Med , vol.22 , pp. 1947-1964
    • Wei, Y.1    Gong, K.2    Zheng, Z.3
  • 52
    • 33745996622 scopus 로고
    • The determination of hydroxyproline in tissue and protein samples containing small proportions of this imino acid
    • Woessner JF. 1961; The determination of hydroxyproline in tissue and protein samples containing small proportions of this imino acid. Arch Biochem Biophys 93: 440–447.
    • (1961) Arch Biochem Biophys , vol.93 , pp. 440-447
    • Woessner, J.F.1
  • 53
    • 27644593484 scopus 로고    scopus 로고
    • The regulation of expanded human nasal chondrocyte redifferentiation capacity by substrate composition and gas plasma surface modification
    • Woodfield TB, Miot S, Martin I et al. 2006; The regulation of expanded human nasal chondrocyte redifferentiation capacity by substrate composition and gas plasma surface modification. Biomaterials 27: 1043–1053.
    • (2006) Biomaterials , vol.27 , pp. 1043-1053
    • Woodfield, T.B.1    Miot, S.2    Martin, I.3
  • 54
    • 80052333417 scopus 로고    scopus 로고
    • Effect of processing on silk-based biomaterials: reproducibility and biocompatibility
    • Wray LS, Hu X, Gallego J et al. 2011; Effect of processing on silk-based biomaterials: reproducibility and biocompatibility. J Biomed Mater Res B Appl Biomater 99: 89–101.
    • (2011) J Biomed Mater Res B Appl Biomater , vol.99 , pp. 89-101
    • Wray, L.S.1    Hu, X.2    Gallego, J.3
  • 55
    • 84924991609 scopus 로고    scopus 로고
    • Bilayered silk/silk–nanoCaP scaffolds for osteochondral tissue engineering: in vitro and in vivo assessment of biological performance
    • Yan LP, Silva-Correia J, Oliveira MB et al. 2014; Bilayered silk/silk–nanoCaP scaffolds for osteochondral tissue engineering: in vitro and in vivo assessment of biological performance. Acta Biomater 12: 227–241. DOI: 10.1016/j.actbio.2014.10.021.
    • (2014) Acta Biomater , vol.12 , pp. 227-241
    • Yan, L.P.1    Silva-Correia, J.2    Oliveira, M.B.3
  • 56
    • 84876732330 scopus 로고    scopus 로고
    • Mechanical and viscoelastic properties of cellulose nanocrystals reinforced poly(ethylene glycol) nanocomposite hydrogels
    • Yang J, Han CR, Duan JF et al. 2013; Mechanical and viscoelastic properties of cellulose nanocrystals reinforced poly(ethylene glycol) nanocomposite hydrogels. ACS Appl Mater Interfaces 5: 3199–3207.
    • (2013) ACS Appl Mater Interfaces , vol.5 , pp. 3199-3207
    • Yang, J.1    Han, C.R.2    Duan, J.F.3
  • 57
    • 84924974341 scopus 로고    scopus 로고
    • Silk microfiber-reinforced silk hydrogel composites for functional cartilage tissue repair
    • Yodmuang S, McNamara SL, Nover AB et al. 2015; Silk microfiber-reinforced silk hydrogel composites for functional cartilage tissue repair. Acta Biomater 11: 27–36.
    • (2015) Acta Biomater , vol.11 , pp. 27-36
    • Yodmuang, S.1    McNamara, S.L.2    Nover, A.B.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.