-
1
-
-
0016643045
-
Adaptive noise cancelling: Principles and applications
-
B. Widrow, J. R. Glover, J. M. McCool, J. Kaunitz, C. S. Williams, R. Hearn, J. R. Zeidler, J. E. Dong, and R. C. Goodlin, "Adaptive noise cancelling: Principles and applications," Proc. IEEE, vol. 63, no. 12, pp. 1692-1716, 1975.
-
(1975)
Proc. IEEE
, vol.63
, Issue.12
, pp. 1692-1716
-
-
Widrow, B.1
Glover, J.R.2
McCool, J.M.3
Kaunitz, J.4
Williams, C.S.5
Hearn, R.6
Zeidler, J.R.7
Dong, J.E.8
Goodlin, R.C.9
-
2
-
-
0041958932
-
Ideal spatial adaptation by wavelet shrinkage
-
D. L. Donoho and I. M. Johnstone, "Ideal spatial adaptation by wavelet shrinkage," Biometrika, vol. 81, pp. 425-455, 1994.
-
(1994)
Biometrika
, vol.81
, pp. 425-455
-
-
Donoho, D.L.1
Johnstone, I.M.2
-
3
-
-
63449122839
-
Development of EMD-based denoising methods inspired by wavelet thresholding
-
Y. Kopsinis and S. McLaughlin, "Development of EMD-based denoising methods inspired by wavelet thresholding," IEEE Trans. Signal Process., vol. 57, no. 4, pp. 1351-1362, 2009.
-
(2009)
IEEE Trans. Signal Process.
, vol.57
, Issue.4
, pp. 1351-1362
-
-
Kopsinis, Y.1
McLaughlin, S.2
-
4
-
-
54049150301
-
Wavelet denoising techniques with applications to experimental geophysical data
-
A. To, J. Moore, and S. Glaser, "Wavelet denoising techniques with applications to experimental geophysical data," Signal Process., vol. 89, no. 2, pp. 144-160, 2009.
-
(2009)
Signal Process.
, vol.89
, Issue.2
, pp. 144-160
-
-
To, A.1
Moore, J.2
Glaser, S.3
-
5
-
-
0033355619
-
On wavelet denoising and its applications to time delay estimation
-
P. Ching, H. So, and S. Q. Wu, "On wavelet denoising and its applications to time delay estimation," IEEE Trans. Signal Process., vol. 47, no. 10, pp. 2879-2882, 1999.
-
(1999)
IEEE Trans. Signal Process.
, vol.47
, Issue.10
, pp. 2879-2882
-
-
Ching, P.1
So, H.2
Wu, S.Q.3
-
6
-
-
0029307534
-
De-noising by soft-thresholding
-
D. Donoho, "De-noising by soft-thresholding," IEEE Trans. Inf. Theory, vol. 41, no. 3, pp. 613-627, 1995.
-
(1995)
IEEE Trans. Inf. Theory
, vol.41
, Issue.3
, pp. 613-627
-
-
Donoho, D.1
-
7
-
-
33644673645
-
Multivariate denoising using wavelets and principal component analysis
-
M. Aminghafari, N. Cheze, and J.-M. Poggi, "Multivariate denoising using wavelets and principal component analysis," Computat. Statist. Data Anal., vol. 50, no. 9, pp. 2381-2398, 2006.
-
(2006)
Computat. Statist. Data Anal.
, vol.50
, Issue.9
, pp. 2381-2398
-
-
Aminghafari, M.1
Cheze, N.2
Poggi, J.-M.3
-
8
-
-
5444236478
-
The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis
-
N. Huang, Z. Shen, S. Long, M. Wu, H. Shih, Q. Zheng, N. Yen, C. Tung, and H. Liu, "The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis," Proc. Royal Soc. A, vol. 454, pp. 903-995, 1998.
-
(1998)
Proc. Royal Soc. A
, vol.454
, pp. 903-995
-
-
Huang, N.1
Shen, Z.2
Long, S.3
Wu, M.4
Shih, H.5
Zheng, Q.6
Yen, N.7
Tung, C.8
Liu, H.9
-
9
-
-
0033330857
-
Two denoising methods by wavelet transform
-
Q. Pan, L. Zhang, G. Dai, and H. Zhang, "Two denoising methods by wavelet transform," IEEE Trans. Signal Process., vol. 47, no. 12, pp. 3401-3406, 1999.
-
(1999)
IEEE Trans. Signal Process.
, vol.47
, Issue.12
, pp. 3401-3406
-
-
Pan, Q.1
Zhang, L.2
Dai, G.3
Zhang, H.4
-
11
-
-
77952080754
-
Multivariate empirical mode decomposition
-
N. Rehman and D. P. Mandic, "Multivariate empirical mode decomposition,"Proc. Royal Soc. A, vol. 466, no. 2117, pp. 1291-1302, 2010.
-
(2010)
Proc. Royal Soc. A
, vol.466
, Issue.2117
, pp. 1291-1302
-
-
Rehman, N.1
Mandic, D.P.2
-
12
-
-
79954532442
-
Filter bank property of multivariate empirical mode decomposition
-
N. Rehman and D. P. Mandic, "Filter bank property of multivariate empirical mode decomposition," IEEE Trans. Signal Process., vol. 59, pp. 2421-2426, 2011.
-
(2011)
IEEE Trans. Signal Process.
, vol.59
, pp. 2421-2426
-
-
Rehman, N.1
Mandic, D.P.2
-
13
-
-
0029306339
-
Improving the readability of time-frequency and time-scale representations by the reassignment method
-
F. Auger and P. Flandrin, "Improving the readability of time-frequency and time-scale representations by the reassignment method,"IEEE Trans. Signal Process., vol. 43, no. 5, pp. 1068-1089, 1995.
-
(1995)
IEEE Trans. Signal Process.
, vol.43
, Issue.5
, pp. 1068-1089
-
-
Auger, F.1
Flandrin, P.2
-
14
-
-
85032751893
-
Time-frequency reassignment and synchrosqueezing: An overview
-
F. Auger, P. Flandrin, Y.-T. Lin, S. McLaughlin, S. Meignen, T. Oberlin, and H.-T. Wu, "Time-frequency reassignment and synchrosqueezing: An overview," IEEE Signal Process. Mag., vol. 30, no. 6, pp. 32-41, 2013.
-
(2013)
IEEE Signal Process. Mag.
, vol.30
, Issue.6
, pp. 32-41
-
-
Auger, F.1
Flandrin, P.2
Lin, Y.-T.3
McLaughlin, S.4
Meignen, S.5
Oberlin, T.6
Wu, H.-T.7
-
15
-
-
0017932960
-
Analysis of time-varying signals with small BT values
-
K. Kodera, R. Gendrin, and C. Villedary, "Analysis of time-varying signals with small BT values," IEEE Trans. Acoust., Speech Signal Process., vol. 26, no. 1, pp. 64-76, 1978.
-
(1978)
IEEE Trans. Acoust., Speech Signal Process.
, vol.26
, Issue.1
, pp. 64-76
-
-
Kodera, K.1
Gendrin, R.2
Villedary, C.3
-
16
-
-
0033177668
-
Time-frequency representation based on the reassigned s-method
-
I. Djurovic and L. Stankovic, "Time-frequency representation based on the reassigned s-method," Signal Process., vol. 77, no. 1, pp. 115-120, 1999.
-
(1999)
Signal Process.
, vol.77
, Issue.1
, pp. 115-120
-
-
Djurovic, I.1
Stankovic, L.2
-
17
-
-
85130292704
-
A nonlinear squeezing of the continuous wavelet transform based on auditory nerve models
-
I. Daubechies and S. Maes, "A nonlinear squeezing of the continuous wavelet transform based on auditory nerve models," in Proc. Wavelets in Med. Biol., 1996, pp. 527-546.
-
Proc. Wavelets in Med. Biol., 1996
, pp. 527-546
-
-
Daubechies, I.1
Maes, S.2
-
18
-
-
78751584911
-
Synchrosqueezed wavelet transforms: An empirical mode decomposition-like tool
-
I. Daubechies, J. Lu, and H.-T. Wu, "Synchrosqueezed wavelet transforms: An empirical mode decomposition-like tool," Appl. Computat. Harmonic Anal., vol. 30, no. 2, pp. 243-261, 2011.
-
(2011)
Appl. Computat. Harmonic Anal.
, vol.30
, Issue.2
, pp. 243-261
-
-
Daubechies, I.1
Lu, J.2
Wu, H.-T.3
-
19
-
-
80052631685
-
One or two frequencies? The synchrosqueezing answers
-
H.-T. Wu, P. Flandrin, and I. Daubechies, "One or two frequencies? The synchrosqueezing answers," Adv. Adapt. Data Anal., vol. 3, no. 1-2, pp. 29-39, 2011.
-
(2011)
Adv. Adapt. Data Anal.
, vol.3
, Issue.1-2
, pp. 29-39
-
-
Wu, H.-T.1
Flandrin, P.2
Daubechies, I.3
-
20
-
-
0003456813
-
-
New York, NY, USA: Academic
-
R. Carmona, W.-L. Hwang, and B. Torrésani, Practical Time-Frequency Analysis. New York, NY, USA: Academic, 1998.
-
(1998)
Practical Time-Frequency Analysis
-
-
Carmona, R.1
Hwang, W.-L.2
Torrésani, B.3
-
21
-
-
84905271015
-
The Fourier-based synchrosqueezing transform
-
T. Oberlin, S. Meignen, and V. Perrier, "The Fourier-based synchrosqueezing transform," in Proc. IEEE Int. Conf. Acoust., Speech, Signal Process., 2014, pp. 315-319.
-
Proc. IEEE Int. Conf. Acoust., Speech, Signal Process., 2014
, pp. 315-319
-
-
Oberlin, T.1
Meignen, S.2
Perrier, V.3
-
22
-
-
84867513574
-
A new algorithm for multicomponent signals analysis based on synchrosqueezing: With an application to signal sampling and denoising
-
S. Meignen, T. Oberlin, and S. McLaughlin, "A new algorithm for multicomponent signals analysis based on synchrosqueezing: With an application to signal sampling and denoising," IEEE Trans. Signal Process., vol. 60, no. 11, pp. 5787-5798, 2012.
-
(2012)
IEEE Trans. Signal Process.
, vol.60
, Issue.11
, pp. 5787-5798
-
-
Meignen, S.1
Oberlin, T.2
McLaughlin, S.3
-
23
-
-
0000293183
-
Theory of communication
-
D. Gabor, "Theory of communication," Proc. IEEE, vol. 93, pp. 429-457, 1946.
-
(1946)
Proc. IEEE
, vol.93
, pp. 429-457
-
-
Gabor, D.1
-
24
-
-
84855933016
-
Analysis of modulated multivariate oscillations
-
J. M. Lilly and S. C. Olhede, "Analysis of modulated multivariate oscillations,"IEEE Trans. Signal Process., vol. 60, no. 2, pp. 600-612, 2012.
-
(2012)
IEEE Trans. Signal Process.
, vol.60
, Issue.2
, pp. 600-612
-
-
Lilly, J.M.1
Olhede, S.C.2
-
25
-
-
74949125577
-
Bivariate instantaneous frequency and bandwidth
-
J. M. Lilly and S. C. Olhede, "Bivariate instantaneous frequency and bandwidth," IEEE Trans. Signal Process., vol. 58, no. 2, pp. 591-603, 2010.
-
(2010)
IEEE Trans. Signal Process.
, vol.58
, Issue.2
, pp. 591-603
-
-
Lilly, J.M.1
Olhede, S.C.2
-
26
-
-
84871772255
-
The synchrosqueezing algorithm for time-varying spectral analysis: Robustness properties and new paleoclimate applications
-
G. Thakur, E. Brevdo, N. S. Fuckar, and H.-T. Wu, "The synchrosqueezing algorithm for time-varying spectral analysis: Robustness properties and new paleoclimate applications," Signal Process., vol. 93, no. 5, pp. 1079-1094, 2013.
-
(2013)
Signal Process.
, vol.93
, Issue.5
, pp. 1079-1094
-
-
Thakur, G.1
Brevdo, E.2
Fuckar, N.S.3
Wu, H.-T.4
-
27
-
-
84875691508
-
-
Dedham, MA, USA: Artech House
-
L. Stankoviæ, M. Dakoviæ, and T. Thayaparan, Time-Frequency Signal Analysis With Applications. Dedham, MA, USA: Artech House, 2013.
-
(2013)
Time-Frequency Signal Analysis with Applications
-
-
Stankoviæ, L.1
Dakoviæ, M.2
Thayaparan, T.3
-
28
-
-
1642485108
-
The Hilbert spectrum via wavelet projections
-
S. Olhede and A. Walden, "The Hilbert spectrum via wavelet projections,"Proc. Royal Soc. A, vol. 460, pp. 955-975, 2004.
-
(2004)
Proc. Royal Soc. A
, vol.460
, pp. 955-975
-
-
Olhede, S.1
Walden, A.2
-
29
-
-
84908691492
-
Synchrosqueezing-based time-frequency analysis of multivariate data
-
A. Ahrabian, D. Looney, L. Stankovic, and D. Mandic, "Synchrosqueezing-based time-frequency analysis of multivariate data,"Signal Process., vol. 106, pp. 331-341, 2015.
-
(2015)
Signal Process.
, vol.106
, pp. 331-341
-
-
Ahrabian, A.1
Looney, D.2
Stankovic, L.3
Mandic, D.4
-
30
-
-
36749052250
-
Bivariate empirical mode decomposition
-
G. Rilling, P. Flandrin, P. Goncalves, and J. M. Lilly, "Bivariate empirical mode decomposition," IEEE Signal Process. Lett., vol. 14, no. 12, pp. 936-939, 2007.
-
(2007)
IEEE Signal Process. Lett.
, vol.14
, Issue.12
, pp. 936-939
-
-
Rilling, G.1
Flandrin, P.2
Goncalves, P.3
Lilly, J.M.4
-
31
-
-
85032750818
-
Empirical mode decomposition-based time-frequency analysis of multivariate signals: The power of adaptive data analysis
-
D. Mandic, N. Rehman, Z. Wu, and N. Huang, "Empirical mode decomposition-based time-frequency analysis of multivariate signals: The power of adaptive data analysis," IEEE Signal Process. Mag., vol. 30, no. 6, pp. 74-86, 2013.
-
(2013)
IEEE Signal Process. Mag.
, vol.30
, Issue.6
, pp. 74-86
-
-
Mandic, D.1
Rehman, N.2
Wu, Z.3
Huang, N.4
-
32
-
-
84872165334
-
Classification of motor imagery BCI using multivariate empirical mode decomposition
-
C. Park, D. Looney, N. Rehman, A. Ahrabian, and D. P. Mandic, "Classification of motor imagery BCI using multivariate empirical mode decomposition,"IEEE Trans. Neural Syst. Rehab. Eng., vol. 21, no. 1, pp. 10-22, 2013.
-
(2013)
IEEE Trans. Neural Syst. Rehab. Eng.
, vol.21
, Issue.1
, pp. 10-22
-
-
Park, C.1
Looney, D.2
Rehman, N.3
Ahrabian, A.4
Mandic, D.P.5
|