메뉴 건너뛰기




Volumn 32, Issue , 2015, Pages 72-79

Ions motion algorithm for solving optimization problems

Author keywords

Ions motion algorithm; Meta heuristic algorithms; Optimization problems

Indexed keywords

HEURISTIC ALGORITHMS; IONS; OPTIMIZATION; PROBLEM SOLVING;

EID: 84926431460     PISSN: 15684946     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.asoc.2015.03.035     Document Type: Article
Times cited : (197)

References (46)
  • 3
    • 0034140869 scopus 로고    scopus 로고
    • What is evolutionary computation
    • D.B. Fogel What is evolutionary computation IEEE Spectrum 2000 26 32
    • (2000) IEEE Spectrum , pp. 26-32
    • Fogel, D.B.1
  • 4
    • 0003722376 scopus 로고
    • Optimization and Machine Learning Addison Wesley, Reading
    • D.E. Goldberg Genetic Algorithms in Search 1989 Optimization and Machine Learning Addison Wesley, Reading
    • (1989) Genetic Algorithms in Search
    • Goldberg, D.E.1
  • 6
    • 4344714817 scopus 로고    scopus 로고
    • A comparative study of differential evolution particle swarm optimization and evolutionary algorithms on numerical benchmark problems
    • Piscataway, NJ
    • J. Vesterstrom, and R. Thomsen A comparative study of differential evolution particle swarm optimization and evolutionary algorithms on numerical benchmark problems IEEE Congress on Evolutionary Computation (CEC' 2004) Piscataway, NJ 2004 1980 1987
    • (2004) IEEE Congress on Evolutionary Computation (CEC' 2004) , pp. 1980-1987
    • Vesterstrom, J.1    Thomsen, R.2
  • 7
    • 0142000477 scopus 로고    scopus 로고
    • Differential evolution - a simple and efficient heuristic for global optimization over continuous spaces
    • K. Price, and R. Storn Differential evolution - a simple and efficient heuristic for global optimization over continuous spaces J. Global Optim. 11 1997 341 359
    • (1997) J. Global Optim. , vol.11 , pp. 341-359
    • Price, K.1    Storn, R.2
  • 9
    • 11144337211 scopus 로고    scopus 로고
    • Modified differential evolution: a greedy random strategy for genetic recombination
    • P. Bergey, and C. Ragsdale Modified differential evolution: a greedy random strategy for genetic recombination Omega 33 2005 255 265
    • (2005) Omega , vol.33 , pp. 255-265
    • Bergey, P.1    Ragsdale, C.2
  • 10
    • 34249984933 scopus 로고    scopus 로고
    • Empirical analysis of self-adaptive differential evolution
    • A. Salman, A. Engelbrecht, and M. Omran Empirical analysis of self-adaptive differential evolution Eur. J. Oper. Res. 183 2007 785 804
    • (2007) Eur. J. Oper. Res. , vol.183 , pp. 785-804
    • Salman, A.1    Engelbrecht, A.2    Omran, M.3
  • 13
    • 85015815551 scopus 로고    scopus 로고
    • The particle swarm: explosion, stability and convergence in multi-dimensional complex space
    • M. Clerc, and J. Kennedy The particle swarm: explosion, stability and convergence in multi-dimensional complex space IEEE Trans. Evol. Comput. 20 2002 1671 1676
    • (2002) IEEE Trans. Evol. Comput. , vol.20 , pp. 1671-1676
    • Clerc, M.1    Kennedy, J.2
  • 14
    • 84890087018 scopus 로고    scopus 로고
    • Dynamic Diversity Enhancement in Particle Swarm Optimization (DDEPSO) algorithm for preventing from premature convergence
    • O.M. Nezami, A. Bahrampour, and P. Jamshidlou Dynamic Diversity Enhancement in Particle Swarm Optimization (DDEPSO) algorithm for preventing from premature convergence Procedia Comput. Sci. 24 2013 54 65
    • (2013) Procedia Comput. Sci. , vol.24 , pp. 54-65
    • Nezami, O.M.1    Bahrampour, A.2    Jamshidlou, P.3
  • 15
    • 84857832525 scopus 로고    scopus 로고
    • A modified artificial bee colony algorithm for real-parameter optimization
    • B. Akay, and D. Karaboga A modified artificial bee colony algorithm for real-parameter optimization Information Sciences 2012 120 142
    • (2012) Information Sciences , pp. 120-142
    • Akay, B.1    Karaboga, D.2
  • 16
    • 67349273050 scopus 로고    scopus 로고
    • A comparative study of artificial bee colony algorithm
    • D. Karaboga, and B. Akay A comparative study of artificial bee colony algorithm Appl. Math. Comput. 214 2009 108 132
    • (2009) Appl. Math. Comput. , vol.214 , pp. 108-132
    • Karaboga, D.1    Akay, B.2
  • 17
    • 34548479029 scopus 로고    scopus 로고
    • On the performance of artificial bee colony (ABC) algorithm
    • D. Karaboga, and B. Basturk On the performance of artificial bee colony (ABC) algorithm Applied Soft Computing 2008 687 697
    • (2008) Applied Soft Computing , pp. 687-697
    • Karaboga, D.1    Basturk, B.2
  • 18
    • 35148827874 scopus 로고    scopus 로고
    • An idea based on honey bee swarm for numerical optimization
    • D. Karaboga An idea based on honey bee swarm for numerical optimization Technical Report-TR06 2005
    • (2005) Technical Report-TR06
    • Karaboga, D.1
  • 19
    • 84887226669 scopus 로고    scopus 로고
    • Self adaptive artificial bee colony for global numerical optimization
    • W. Gu, M. Yin, and C. Wang Self adaptive artificial bee colony for global numerical optimization IERI Procedia 1 2012 59 65
    • (2012) IERI Procedia , vol.1 , pp. 59-65
    • Gu, W.1    Yin, M.2    Wang, C.3
  • 25
    • 70349992562 scopus 로고    scopus 로고
    • Glowworm swarm optimisation: a new method for optimising multi-modal functions
    • K. Krishnanand, and D. Ghose Glowworm swarm optimisation: a new method for optimising multi-modal functions Int. J. Comput. Intell. Stud. 1 2009 93 119
    • (2009) Int. J. Comput. Intell. Stud. , vol.1 , pp. 93-119
    • Krishnanand, K.1    Ghose, D.2
  • 26
    • 33847330615 scopus 로고    scopus 로고
    • A multi-swarm cooperative particle swarm optimizer
    • B. Niu, Y. Zhu, X. He, H. Wu, and O. MCPS A multi-swarm cooperative particle swarm optimizer Appl. Math. Comput. 185 2007 1050 1062
    • (2007) Appl. Math. Comput. , vol.185 , pp. 1050-1062
    • Niu, B.1    Zhu, Y.2    He, X.3    Wu, H.4    Mcps, O.5
  • 27
    • 6344234316 scopus 로고    scopus 로고
    • Studies on artificial fish swarm optimization algorithm based on decomposition and coordination techniques
    • X.-L. Li, and J.-X. Qian Studies on artificial fish swarm optimization algorithm based on decomposition and coordination techniques J. Circuits Syst. 1 2003 1 6
    • (2003) J. Circuits Syst. , vol.1 , pp. 1-6
    • Li, X.-L.1    Qian, J.-X.2
  • 28
    • 79953855364 scopus 로고    scopus 로고
    • Firefly algorithm, stochastic test functions and design optimisation
    • X.-S. Yang Firefly algorithm, stochastic test functions and design optimisation Int. J. Bio-Inspir. Comput. 2 2010 78 84
    • (2010) Int. J. Bio-Inspir. Comput. , vol.2 , pp. 78-84
    • Yang, X.-S.1
  • 31
    • 84926471634 scopus 로고    scopus 로고
    • Heart: a novel optimization algorithm for cluster analysis
    • A. Hatamlou Heart: a novel optimization algorithm for cluster analysis Prog. Artif. Intell. 2 2014 167 173
    • (2014) Prog. Artif. Intell. , vol.2 , pp. 167-173
    • Hatamlou, A.1
  • 32
    • 0026988817 scopus 로고
    • Genetic algorithms
    • J.H. Holland Genetic algorithms Sci. Am. 267 1992 66 72
    • (1992) Sci. Am. , vol.267 , pp. 66-72
    • Holland, J.H.1
  • 33
    • 0142000477 scopus 로고    scopus 로고
    • Differential evolution - a simple and efficient heuristic for global optimization over continuous spaces
    • R. Storn, and K. Price Differential evolution - a simple and efficient heuristic for global optimization over continuous spaces J. Global Optim. 11 1997 341 359
    • (1997) J. Global Optim. , vol.11 , pp. 341-359
    • Storn, R.1    Price, K.2
  • 36
    • 57249115093 scopus 로고    scopus 로고
    • Biogeography-based optimization
    • D. Simon Biogeography-based optimization IEEE Trans. Evol. Comput. 12 2008 702 713
    • (2008) IEEE Trans. Evol. Comput. , vol.12 , pp. 702-713
    • Simon, D.1
  • 38
    • 84868137183 scopus 로고    scopus 로고
    • A new meta-heuristic method: ray optimization
    • A. Kaveh, and M. Khayatazad A new meta-heuristic method: ray optimization Comput. Struct. 112 2012 283 294
    • (2012) Comput. Struct. , vol.112 , pp. 283-294
    • Kaveh, A.1    Khayatazad, M.2
  • 39
    • 84894569947 scopus 로고    scopus 로고
    • An optimization algorithm inspired by the states of matter that improves the balance between exploration and exploitation
    • E. Cuevas, A. Echavarría, and M.A. Ramírez-Ortegón An optimization algorithm inspired by the states of matter that improves the balance between exploration and exploitation Appl. Intell. 40 2014 256 272
    • (2014) Appl. Intell. , vol.40 , pp. 256-272
    • Cuevas, E.1    Echavarría, A.2    Ramírez-Ortegón, M.A.3
  • 40
    • 27544500819 scopus 로고    scopus 로고
    • A new optimization method: big bang-big crunch
    • O.K. Erol, and I. Eksin A new optimization method: big bang-big crunch Adv. Eng. Softw. 37 2006 106 111
    • (2006) Adv. Eng. Softw. , vol.37 , pp. 106-111
    • Erol, O.K.1    Eksin, I.2
  • 41
    • 84870058393 scopus 로고    scopus 로고
    • Black hole: a new heuristic optimization approach for data clustering
    • A. Hatamlou Black hole: a new heuristic optimization approach for data clustering Inf. Sci. 222 2013 175 184
    • (2013) Inf. Sci. , vol.222 , pp. 175-184
    • Hatamlou, A.1
  • 42
    • 79957978716 scopus 로고    scopus 로고
    • ACROA: artificial chemical reaction optimization algorithm for global optimization
    • B. Alatas ACROA: artificial chemical reaction optimization algorithm for global optimization Expert Syst. Appl. 38 2011 13170 13180
    • (2011) Expert Syst. Appl. , vol.38 , pp. 13170-13180
    • Alatas, B.1
  • 43
    • 84900823605 scopus 로고    scopus 로고
    • KGMO. A swarm optimization algorithm based on the kinetic energy of gas molecules
    • S. Moein, and R. Logeswaran KGMO. A swarm optimization algorithm based on the kinetic energy of gas molecules Inf. Sci. 275 2014 127 144
    • (2014) Inf. Sci. , vol.275 , pp. 127-144
    • Moein, S.1    Logeswaran, R.2
  • 45
    • 84890464528 scopus 로고    scopus 로고
    • A literature survey of benchmark functions forglobal optimization problems
    • M. Jamil, and X. Yang A literature survey of benchmark functions forglobal optimization problems Int. J Math. Modell. Numer. Optim. 4 2013 150 194
    • (2013) Int. J Math. Modell. Numer. Optim. , vol.4 , pp. 150-194
    • Jamil, M.1    Yang, X.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.