메뉴 건너뛰기




Volumn 81, Issue , 2015, Pages 98-116

A survey of fingerprint classification Part II: Experimental analysis and ensemble proposal

Author keywords

Classification; Ensembles; Experimental evaluation; Feature extraction; Fingerprint classification; Fingerprint recognition; Neural networks; Orientation map; Singular points; SVM

Indexed keywords

EXTRACTION; FEATURE EXTRACTION; NEURAL NETWORKS; REUSABILITY; SUPPORT VECTOR MACHINES;

EID: 84926252172     PISSN: 09507051     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.knosys.2015.02.015     Document Type: Article
Times cited : (50)

References (82)
  • 6
    • 0036647191 scopus 로고    scopus 로고
    • Systematic methods for the computation of the directional fields and singular points of fingerprints
    • A.M. Bazen, and S.H. Gerez Systematic methods for the computation of the directional fields and singular points of fingerprints IEEE Trans. Pattern Anal. Machine Intell. 24 7 2002 905 919
    • (2002) IEEE Trans. Pattern Anal. Machine Intell. , vol.24 , Issue.7 , pp. 905-919
    • Bazen, A.M.1    Gerez, S.H.2
  • 12
    • 0036080172 scopus 로고    scopus 로고
    • A multi-classifier approach to fingerprint classification
    • R. Cappelli, D. Maio, and D. Maltoni A multi-classifier approach to fingerprint classification Pattern Anal. Appl. 5 2002 136 144
    • (2002) Pattern Anal. Appl. , vol.5 , pp. 136-144
    • Cappelli, R.1    Maio, D.2    Maltoni, D.3
  • 14
    • 84973587732 scopus 로고
    • A coefficient of agreement for nominal scales
    • J. Cohen A coefficient of agreement for nominal scales Educ. Psychol. Measure. 20 1 1960 37 46
    • (1960) Educ. Psychol. Measure. , vol.20 , Issue.1 , pp. 37-46
    • Cohen, J.1
  • 15
    • 0036643072 scopus 로고    scopus 로고
    • Logistic regression, adaboost and bregman distances
    • M. Collins, R.E. Schapire, and Y. Singer Logistic regression, adaboost and bregman distances Machine Learn. 48 1-3 2002 253 285
    • (2002) Machine Learn. , vol.48 , Issue.13 , pp. 253-285
    • Collins, M.1    Schapire, R.E.2    Singer, Y.3
  • 16
    • 0019715472 scopus 로고
    • Thinning algorithms: A critique and a new methodology
    • E.R. Davies, and A.P.N. Plummer Thinning algorithms: a critique and a new methodology Pattern Recogn. 14 1-6 1981 53 63
    • (1981) Pattern Recogn. , vol.14 , Issue.16 , pp. 53-63
    • Davies, E.R.1    Plummer, A.P.N.2
  • 17
    • 0031269184 scopus 로고    scopus 로고
    • On the optimality of the simple bayesian classifier under zero-one loss
    • P. Domingos, and M. Pazzani On the optimality of the simple bayesian classifier under zero-one loss Machine Learn. 29 2-3 1997 103 130
    • (1997) Machine Learn. , vol.29 , Issue.23 , pp. 103-130
    • Domingos, P.1    Pazzani, M.2
  • 18
    • 69949119734 scopus 로고    scopus 로고
    • Fingerprint and on-line signature verification competitions at icb 2009
    • M. Tistarelli, M. Nixon, Lecture Notes in Computer Science Springer Berlin, Heidelberg
    • B. Dorizzi, R. Cappelli, M. Ferrara, D. Maio, D. Maltoni, N. Houmani, S. Garcia-Salicetti, and A. Mayoue Fingerprint and on-line signature verification competitions at icb 2009 M. Tistarelli, M. Nixon, Advances in Biometrics Lecture Notes in Computer Science vol. 58 2009 Springer Berlin, Heidelberg 725 732
    • (2009) Advances in Biometrics , vol.58 , pp. 725-732
    • Dorizzi, B.1    Cappelli, R.2    Ferrara, M.3    Maio, D.4    Maltoni, D.5    Houmani, N.6    Garcia-Salicetti, S.7    Mayoue, A.8
  • 20
    • 49649098733 scopus 로고    scopus 로고
    • Impact of imputation of missing values on classification error for discrete data
    • A. Farhangfar, L. Kurgan, and J. Dy Impact of imputation of missing values on classification error for discrete data Pattern Recogn. 41 2008 3692 3705
    • (2008) Pattern Recogn. , vol.41 , pp. 3692-3705
    • Farhangfar, A.1    Kurgan, L.2    Dy, J.3
  • 21
    • 78649815360 scopus 로고    scopus 로고
    • Genetics-based machine learning for rule induction: State of the art and taxonomy and comparative study
    • A. Fernández, S. García, J. Luengo, E. Bernadó-Mansilla, and F. Herrera Genetics-based machine learning for rule induction: State of the art and taxonomy and comparative study IEEE Trans. Evol. Comput. 14 6 2010 913 941
    • (2010) IEEE Trans. Evol. Comput. , vol.14 , Issue.6 , pp. 913-941
    • Fernández, A.1    García, S.2    Luengo, J.3    Bernadó-Mansilla, E.4    Herrera, F.5
  • 22
    • 84874667219 scopus 로고    scopus 로고
    • Analysing the classification of imbalanced data-sets with multiple classes: Binarization techniques and ad-hoc approaches
    • A. Fernández, V. López, M. Galar, M.J. del Jesus, and F. Herrera Analysing the classification of imbalanced data-sets with multiple classes: Binarization techniques and ad-hoc approaches Knowl.-Based Syst. 42 2013 97 110
    • (2013) Knowl.-Based Syst. , vol.42 , pp. 97-110
    • Fernández, A.1    López, V.2    Galar, M.3    Del Jesus, M.J.4    Herrera, F.5
  • 23
    • 0000764772 scopus 로고
    • The use of multiple measurements in taxonomic problems
    • R.A. Fisher The use of multiple measurements in taxonomic problems Ann. Eugen. 7 2 1936 179 188
    • (1936) Ann. Eugen. , vol.7 , Issue.2 , pp. 179-188
    • Fisher, R.A.1
  • 24
    • 79953051509 scopus 로고    scopus 로고
    • An overview of ensemble methods for binary classifiers in multi-class problems: Experimental study on one-vs-one and one-vs-all schemes
    • M. Galar, A. Fernández, E. Barrenechea, H. Bustince, and F. Herrera An overview of ensemble methods for binary classifiers in multi-class problems: experimental study on one-vs-one and one-vs-all schemes Pattern Recogn. 44 8 2011 1761 1776
    • (2011) Pattern Recogn. , vol.44 , Issue.8 , pp. 1761-1776
    • Galar, M.1    Fernández, A.2    Barrenechea, E.3    Bustince, H.4    Herrera, F.5
  • 25
    • 84908053525 scopus 로고    scopus 로고
    • DRCW-OVO: Distance-based relative competence weighting combination for one-vs-one strategy in multi-class problems
    • M. Galar, A. Fernández, E. Barrenechea, and F. Herrera DRCW-OVO: Distance-based relative competence weighting combination for one-vs-one strategy in multi-class problems Pattern Recogn. 48 1 2015 28 42
    • (2015) Pattern Recogn. , vol.48 , Issue.1 , pp. 28-42
    • Galar, M.1    Fernández, A.2    Barrenechea, E.3    Herrera, F.4
  • 26
    • 84894490812 scopus 로고    scopus 로고
    • Empowering difficult classes with a similarity-based aggregation in multi-class classification problems
    • M. Galar, A. Fernndez, E. Barrenechea, and F. Herrera Empowering difficult classes with a similarity-based aggregation in multi-class classification problems Inform. Sci. 264 0 2014 135 157
    • (2014) Inform. Sci. , vol.264 , Issue.0 , pp. 135-157
    • Galar, M.1    Fernndez, A.2    Barrenechea, E.3    Herrera, F.4
  • 27
    • 84926254826 scopus 로고    scopus 로고
    • A survey of fingerprint classification I: Taxonomies on feature extraction methods and learning models
    • M. Galar et al., A survey of fingerprint classification I: Taxonomies on feature extraction methods and learning models, submitted for publication, Knowledge Based Syst. 81 (2015) 76-97.
    • (2015) Submitted for Publication, Knowledge Based Syst , vol.81 , pp. 76-97
    • Galar, M.1
  • 28
    • 84856161441 scopus 로고    scopus 로고
    • Prototype selection for nearest neighbor classification: Taxonomy and empirical study
    • S. García, J. Derrac, J. Cano, and F. Herrera Prototype selection for nearest neighbor classification: taxonomy and empirical study IEEE Trans. Pattern Anal. Machine Intell. 34 3 2012 417 435
    • (2012) IEEE Trans. Pattern Anal. Machine Intell. , vol.34 , Issue.3 , pp. 417-435
    • García, S.1    Derrac, J.2    Cano, J.3    Herrera, F.4
  • 29
    • 34848849013 scopus 로고    scopus 로고
    • Fingerprint classification using one-vs-all support vector machines dynamically ordered with naive bayes classifiers
    • J.-H. Hong, J.-K. Min, U.-K. Cho, S.-B. Cho, and C.H. Leung Fingerprint classification using one-vs-all support vector machines dynamically ordered with naive bayes classifiers Pattern Recogn. 41 2008 662 671
    • (2008) Pattern Recogn. , vol.41 , pp. 662-671
    • Hong, J.-H.1    Min, J.-K.2    Cho, U.-K.3    Cho, S.-B.4    Leung, C.H.5
  • 30
    • 0032142349 scopus 로고    scopus 로고
    • Fingerprint image enhancement: Algorithm and performance evaluation
    • L. Hong, Y. Wan, and A. Jain Fingerprint image enhancement: algorithm and performance evaluation IEEE Trans. Pattern Anal. Machine Intell. 20 8 1998 777 789
    • (1998) IEEE Trans. Pattern Anal. Machine Intell. , vol.20 , Issue.8 , pp. 777-789
    • Hong, L.1    Wan, Y.2    Jain, A.3
  • 35
    • 0030104477 scopus 로고    scopus 로고
    • Fingerprint classification
    • K. Karu, and A.K. Jain Fingerprint classification Pattern Recogn. 29 3 1996 389 404
    • (1996) Pattern Recogn. , vol.29 , Issue.3 , pp. 389-404
    • Karu, K.1    Jain, A.K.2
  • 36
    • 0021120530 scopus 로고
    • Fingerprint pattern classification
    • M. Kawagoe, and A. Tojo Fingerprint pattern classification Pattern Recogn. 17 1984 295 303
    • (1984) Pattern Recogn. , vol.17 , pp. 295-303
    • Kawagoe, M.1    Tojo, A.2
  • 37
    • 84894887900 scopus 로고
    • Computer aided design of experiments
    • R.W. Kennard, and L.A. Stone Computer aided design of experiments Technometrics 11 1969 137 148
    • (1969) Technometrics , vol.11 , pp. 137-148
    • Kennard, R.W.1    Stone, L.A.2
  • 39
    • 84861631224 scopus 로고    scopus 로고
    • Fingerprint reference point detection for image retrieval based on symmetry and variation
    • T.H. Le, and H.T. Van Fingerprint reference point detection for image retrieval based on symmetry and variation Pattern Recogn. 45 9 2012 3360 3372
    • (2012) Pattern Recogn. , vol.45 , Issue.9 , pp. 3360-3372
    • Le, T.H.1    Van, H. T.2
  • 40
    • 79951835585 scopus 로고    scopus 로고
    • Improvement of fingerprint retrieval by a statistical classifier
    • K. Leung, and C.H. Leung Improvement of fingerprint retrieval by a statistical classifier IEEE Trans. Inform. Forensics Security 6 1 2011 59 69
    • (2011) IEEE Trans. Inform. Forensics Security , vol.6 , Issue.1 , pp. 59-69
    • Leung, K.1    Leung, C.H.2
  • 41
    • 27344460633 scopus 로고    scopus 로고
    • Constrained nonlinear models of fingerprint orientations with prediction
    • J. Li, W.Y. Yau, and H. Wang Constrained nonlinear models of fingerprint orientations with prediction Pattern Recogn. 39 1 2006 102 114
    • (2006) Pattern Recogn. , vol.39 , Issue.1 , pp. 102-114
    • Li, J.1    Yau, W.Y.2    Wang, H.3
  • 42
    • 34548051603 scopus 로고    scopus 로고
    • Combining singular points and orientation image information for fingerprint classification
    • J. Li, W.-Y. Yau, and H. Wang Combining singular points and orientation image information for fingerprint classification Pattern Recogn. 41 1 2008 353 366
    • (2008) Pattern Recogn. , vol.41 , Issue.1 , pp. 353-366
    • Li, J.1    Yau, W.-Y.2    Wang, H.3
  • 43
    • 70449724649 scopus 로고    scopus 로고
    • Fingerprint classification based on adaboost learning from singularity features
    • M. Liu Fingerprint classification based on adaboost learning from singularity features Pattern Recogn. 43 2010 1062 1070
    • (2010) Pattern Recogn. , vol.43 , pp. 1062-1070
    • Liu, M.1
  • 52
    • 0023524744 scopus 로고
    • Segmentation of fingerprint images using the directional image
    • B.M. Mehtre, N.N. Murthy, S. Kapoor, and B. Chatterjee Segmentation of fingerprint images using the directional image Pattern Recogn. 20 4 1987 429 435
    • (1987) Pattern Recogn. , vol.20 , Issue.4 , pp. 429-435
    • Mehtre, B.M.1    Murthy, N.N.2    Kapoor, S.3    Chatterjee, B.4
  • 53
    • 67349086587 scopus 로고    scopus 로고
    • A gradient-based combined method for the computation of fingerprints orientation field
    • Y. Mei, H. Sun, and D. Xia A gradient-based combined method for the computation of fingerprints orientation field Image Vis. Comput. 27 8 2009 1169 1177
    • (2009) Image Vis. Comput. , vol.27 , Issue.8 , pp. 1169-1177
    • Mei, Y.1    Sun, H.2    Xia, D.3
  • 55
    • 84876917722 scopus 로고    scopus 로고
    • Study on the impact of partition-induced dataset shift on k-fold cross-validation
    • J.G. Moreno-Torres, J.A. Saez, and F. Herrera Study on the impact of partition-induced dataset shift on k-fold cross-validation IEEE Trans. Neural Netw. Learn. Syst. 23 8 2012 1304 1312
    • (2012) IEEE Trans. Neural Netw. Learn. Syst. , vol.23 , Issue.8 , pp. 1304-1312
    • Moreno-Torres, J.G.1    Saez, J.A.2    Herrera, F.3
  • 56
    • 0038343928 scopus 로고    scopus 로고
    • Localization of corresponding points in fingerprints by complex filtering
    • K. Nilsson, and J. Bigun Localization of corresponding points in fingerprints by complex filtering Pattern Recogn. Lett. 24 13 2003 2135 2144
    • (2003) Pattern Recogn. Lett. , vol.24 , Issue.13 , pp. 2135-2144
    • Nilsson, K.1    Bigun, J.2
  • 59
    • 10644223477 scopus 로고    scopus 로고
    • Fingerprint classification using fast fourier transform and nonlinear discriminant analysis
    • C.H. Park, and H. Park Fingerprint classification using fast fourier transform and nonlinear discriminant analysis Pattern Recogn. 38 4 2005 495 503
    • (2005) Pattern Recogn. , vol.38 , Issue.4 , pp. 495-503
    • Park, C.H.1    Park, H.2
  • 64
    • 0029404384 scopus 로고
    • Adaptive flow orientation-based feature extraction in fingerprint images
    • N.K. Ratha, S. Chen, and A.K. Jain Adaptive flow orientation-based feature extraction in fingerprint images Pattern Recogn. 28 11 1995 1657 1672
    • (1995) Pattern Recogn. , vol.28 , Issue.11 , pp. 1657-1672
    • Ratha, N.K.1    Chen, S.2    Jain, A.K.3
  • 65
    • 56749117943 scopus 로고    scopus 로고
    • In defense of one-vs-all classification
    • R. Rifkin, and A. Klautau In defense of one-vs-all classification J. Machine Learn. Res. 5 2004 101 141
    • (2004) J. Machine Learn. Res. , vol.5 , pp. 101-141
    • Rifkin, R.1    Klautau, A.2
  • 66
    • 84884965072 scopus 로고    scopus 로고
    • Analyzing the presence of noise in multi-class problems: Alleviating its influence with the one-vs-one decomposition
    • J.A. Sáez, M. Galar, J. Luengo, and F. Herrera Analyzing the presence of noise in multi-class problems: alleviating its influence with the one-vs-one decomposition Knowl. Inform. Syst. 38 1 2014 179 206
    • (2014) Knowl. Inform. Syst. , vol.38 , Issue.1 , pp. 179-206
    • Sáez, J.A.1    Galar, M.2    Luengo, J.3    Herrera, F.4
  • 68
    • 38248999544 scopus 로고
    • Direct estimation and error analysis for oriented patterns
    • C.F. Shu, and R.C. Jain Direct estimation and error analysis for oriented patterns CVGIP: Image Understand. 58 3 1993 383 398
    • (1993) CVGIP: Image Understand. , vol.58 , Issue.3 , pp. 383-398
    • Shu, C.F.1    Jain, R.C.2
  • 74
    • 34447311338 scopus 로고    scopus 로고
    • Application of a new type of singular points in fingerprint classification
    • L. Wang, and M. Dai Application of a new type of singular points in fingerprint classification Pattern Recogn. Lett. 28 13 2007 1640 1650
    • (2007) Pattern Recogn. Lett. , vol.28 , Issue.13 , pp. 1640-1650
    • Wang, L.1    Dai, M.2
  • 76
    • 84864153221 scopus 로고    scopus 로고
    • Multiclass imbalance problems: Analysis and potential solutions
    • S. Wang, and X. Yao Multiclass imbalance problems: analysis and potential solutions IEEE Trans. Syst. Man Cybernet. Part B: Cybernet. 42 4 2012 1119 1130
    • (2012) IEEE Trans. Syst. Man Cybernet. Part B: Cybernet. , vol.42 , Issue.4 , pp. 1119-1130
    • Wang, S.1    Yao, X.2
  • 78
    • 85040293071 scopus 로고
    • An automated fingerprint identification system
    • J.H. Wegstein An automated fingerprint identification system NBS Special Publication 1982 500 589
    • (1982) NBS Special Publication , pp. 500-589
    • Wegstein, J.H.1
  • 82
    • 12344322746 scopus 로고    scopus 로고
    • Fingerprint classification based on extraction and analysis of singularities and pseudo ridges
    • Q. Zhang, and H. Yan Fingerprint classification based on extraction and analysis of singularities and pseudo ridges Pattern Recogn. 37 11 2004 2233 2243
    • (2004) Pattern Recogn. , vol.37 , Issue.11 , pp. 2233-2243
    • Zhang, Q.1    Yan, H.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.