메뉴 건너뛰기




Volumn 74, Issue , 2015, Pages 119-132

Credal c-means clustering method based on belief functions

Author keywords

Belief functions; Credal partition; Data clustering; Fuzzy c means (FCM); Uncertain data

Indexed keywords

CLUSTER ANALYSIS; CLUSTERING ALGORITHMS; FUZZY SYSTEMS; UNCERTAINTY ANALYSIS;

EID: 84926225428     PISSN: 09507051     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.knosys.2014.11.013     Document Type: Article
Times cited : (133)

References (38)
  • 3
    • 0344152300 scopus 로고    scopus 로고
    • A comparison of Bayesian and belief function reasoning
    • B. Cobb, P. Shenoy, A comparison of Bayesian and belief function reasoning, Inform. Syst. Front. 5 (4) (2003) 345-358.
    • (2003) Inform. Syst. Front. , vol.5 , Issue.4 , pp. 345-358
    • Cobb, B.1    Shenoy, P.2
  • 4
    • 8344289130 scopus 로고    scopus 로고
    • A comparison of methods for transforming of belief function models to probability models
    • T.D. Nielsen, N.L. Zhang (Eds.) Springer, Berlin
    • B. Cobb, P. Shenoy, A comparison of methods for transforming of belief function models to probability models, in: T.D. Nielsen, N.L. Zhang (Eds.), Symbolic and Quantitative Approaches to Reasoning with Uncertainty, Springer, Berlin, 2003, pp. 255-266.
    • (2003) Symbolic and Quantitative Approaches to Reasoning with Uncertainty , pp. 255-266
    • Cobb, B.1    Shenoy, P.2
  • 5
    • 33644864393 scopus 로고    scopus 로고
    • On the plausibility transformation method for translating belief function models to probability models
    • B. Cobb, P. Shenoy, On the plausibility transformation method for translating belief function models to probability models, Int. J. Approx. Reason. 41 (3) (2006) 314-330.
    • (2006) Int. J. Approx. Reason. , vol.41 , Issue.3 , pp. 314-330
    • Cobb, B.1    Shenoy, P.2
  • 7
    • 0000586827 scopus 로고
    • Clustering relational data containing noise and outliers
    • R. Dave, Clustering relational data containing noise and outliers, Pattern Recogn. Lett. 12 (1991) 657-664.
    • (1991) Pattern Recogn. Lett. , vol.12 , pp. 657-664
    • Dave, R.1
  • 9
    • 0031139176 scopus 로고    scopus 로고
    • Robust clustering methods: A unified view
    • R. Dave, R. Krishnapuram, Robust clustering methods: a unified view, IEEE Trans. Fuzzy Syst. 5 (2) (1997) 270-293.
    • (1997) IEEE Trans. Fuzzy Syst. , vol.5 , Issue.2 , pp. 270-293
    • Dave, R.1    Krishnapuram, R.2
  • 10
    • 0029307876 scopus 로고
    • A k-nearest neighbor classification rule based on Dempster-Shafer theory
    • T. Denoeux, A k-nearest neighbor classification rule based on Dempster-Shafer theory, IEEE Trans. Syst. Man Cybernet. 25 (5) (1995) 804-813.
    • (1995) IEEE Trans. Syst. Man Cybernet , vol.25 , Issue.5 , pp. 804-813
    • Denoeux, T.1
  • 11
    • 33947108026 scopus 로고    scopus 로고
    • Classification using belief functions: Relationship between case-based and model-based approaches
    • T. Denoeux, P. Smets, Classification using belief functions: relationship between case-based and model-based approaches, IEEE Trans. Syst. Man Cybernet.-B 36 (6) (2006) 1395-1406.
    • (2006) IEEE Trans. Syst. Man Cybernet.-B , vol.36 , Issue.6 , pp. 1395-1406
    • Denoeux, T.1    Smets, P.2
  • 14
    • 84858703834 scopus 로고    scopus 로고
    • Evidential reasoning in large partially ordered sets: Application to multi-label classification, ensemble clustering and preference aggregation
    • T. Denoeux, M.-H. Masson, Evidential reasoning in large partially ordered sets: application to multi-label classification, ensemble clustering and preference aggregation, Ann. Oper. Res. 195 (1) (2012) 135-161.
    • (2012) Ann. Oper. Res. , vol.195 , Issue.1 , pp. 135-161
    • Denoeux, T.1    Masson, M.-H.2
  • 15
    • 0015644825 scopus 로고
    • A fuzzy relative of the ISODATA process and its use in detecting compact, well-separated clusters
    • J. Dunn, A fuzzy relative of the ISODATA process and its use in detecting compact, well-separated clusters, J. Cybernet. (1974) 32-57.
    • (1974) J. Cybernet. , pp. 32-57
    • Dunn, J.1
  • 16
    • 78649934709 scopus 로고    scopus 로고
    • University of California, School of Information and Computer Science, Irvine, CA, USA
    • A. Frank, A. Asuncion, UCI Machine Learning Repository, University of California, School of Information and Computer Science, Irvine, CA, USA, 2010. 〈http://archive.ics.uci.edu/ml〉.
    • (2010) UCI Machine Learning Repository
    • Frank, A.1    Asuncion, A.2
  • 18
    • 84889085740 scopus 로고    scopus 로고
    • Sequential weighted combination for unreliable evidence based on evidence variance
    • D. Han, Y. Deng, C. Han, Sequential weighted combination for unreliable evidence based on evidence variance, Decis. Support Syst. 56 (2013) 387-393.
    • (2013) Decis. Support Syst. , vol.56 , pp. 387-393
    • Han, D.1    Deng, Y.2    Han, C.3
  • 19
    • 84892438659 scopus 로고    scopus 로고
    • A new decision-making method by incomplete preferences based on evidence distance
    • S. Huang, X. Su, Y. Hu, S. Mahadevan, Y. Deng, A new decision-making method by incomplete preferences based on evidence distance, Knowl.-Based Syst. 56 (2014) 264-272.
    • (2014) Knowl.-Based Syst. , vol.56 , pp. 264-272
    • Huang, S.1    Su, X.2    Hu, Y.3    Mahadevan, S.4    Deng, Y.5
  • 21
    • 0030214781 scopus 로고    scopus 로고
    • The possibilistic c-means algorithm: Insights and recommendations
    • R. Krishnapuram, J. Keller, The possibilistic c-means algorithm: insights and recommendations, IEEE Trans. Fuzzy Syst. 4 (3) (1996) 385-393.
    • (1996) IEEE Trans. Fuzzy Syst. , vol.4 , Issue.3 , pp. 385-393
    • Krishnapuram, R.1    Keller, J.2
  • 22
    • 34447289684 scopus 로고    scopus 로고
    • Combining classifiers for word sense disambiguation based on Dempster-Shafer theory and OWA operators
    • C. Le, V. Huynh, A. Shimazu, Y. Nakamori, Combining classifiers for word sense disambiguation based on Dempster-Shafer theory and OWA operators, Data Knowl. Eng. 63 (2) (2007) 381-396.
    • (2007) Data Knowl. Eng. , vol.63 , Issue.2 , pp. 381-396
    • Le, C.1    Huynh, V.2    Shimazu, A.3    Nakamori, Y.4
  • 23
    • 0020102027 scopus 로고
    • Least squares quantization in PCM
    • S. Lloyd, Least squares quantization in PCM, IEEE. Trans. Inform. Theory 28 (2) (1982) 129-137.
    • (1982) IEEE. Trans. Inform. Theory , vol.28 , Issue.2 , pp. 129-137
    • Lloyd, S.1
  • 24
    • 78650925150 scopus 로고    scopus 로고
    • Evidence supporting measure of similarity for reducing the complexity in information fusion
    • X. Li, J. Dezert, F. Smarandache, X. Huang, Evidence supporting measure of similarity for reducing the complexity in information fusion, Inform. Sci. 181 (10) (2011) 1818-1835.
    • (2011) Inform. Sci. , vol.181 , Issue.10 , pp. 1818-1835
    • Li, X.1    Dezert, J.2    Smarandache, F.3    Huang, X.4
  • 25
    • 80455155141 scopus 로고    scopus 로고
    • Combination of sources of evidence with different discounting factors based on a new dissimilarity measure
    • Z. Liu, J. Dezert, Q. Pan, G. Mercier, Combination of sources of evidence with different discounting factors based on a new dissimilarity measure, Decis. Support Syst. 52 (2011) 133-141.
    • (2011) Decis. Support Syst. , vol.52 , pp. 133-141
    • Liu, Z.1    Dezert, J.2    Pan, Q.3    Mercier, G.4
  • 26
    • 84860347229 scopus 로고    scopus 로고
    • Dynamic evidential reasoning for change detection in remote sensing images
    • Z. Liu, J. Dezert, G. Mercier, Q. Pan, Dynamic evidential reasoning for change detection in remote sensing images, IEEE Trans. Geosci. Remote Sens. 50 (5) (2012) 1955-1967.
    • (2012) IEEE Trans. Geosci. Remote Sens. , vol.50 , Issue.5 , pp. 1955-1967
    • Liu, Z.1    Dezert, J.2    Mercier, G.3    Pan, Q.4
  • 27
    • 83455237493 scopus 로고    scopus 로고
    • Belief c-means: An extension of fuzzy cmeans algorithm in belief functions framework Pattern
    • Z. Liu, J. Dezert, G. Mercier, Q. Pan, Belief c-means: an extension of fuzzy cmeans algorithm in belief functions framework, Pattern Recogn. Lett. 33 (3) (2012) 291-300.
    • (2012) Recogn. Lett. , vol.33 , Issue.3 , pp. 291-300
    • Liu, Z.1    Dezert, J.2    Mercier, G.3    Pan, Q.4
  • 28
    • 84883862267 scopus 로고    scopus 로고
    • Evidential classifier for imprecise data based on belief functions
    • Z. Liu, Q. Pan, J. Dezert, Evidential classifier for imprecise data based on belief functions, Knowl.-Based Syst. 52 (2013) 246-257.
    • (2013) Knowl.-Based Syst. , vol.52 , pp. 246-257
    • Liu, Z.1    Pan, Q.2    Dezert, J.3
  • 29
    • 0346216895 scopus 로고    scopus 로고
    • Clustering interval-valued data using belief functions
    • M.-H. Masson, T. Denoeux, Clustering interval-valued data using belief functions, Pattern Recogn. Lett. 25 (2) (2004) 163-171.
    • (2004) Pattern Recogn. Lett. , vol.25 , Issue.2 , pp. 163-171
    • Masson, M.-H.1    Denoeux, T.2
  • 30
    • 78649335185 scopus 로고    scopus 로고
    • Ensemble clustering in the belief functions framework
    • M.-H. Masson, T. Denoeux, Ensemble clustering in the belief functions framework, Int. J. Approx. Reason. 52 (1) (2011) 92-109.
    • (2011) Int. J. Approx. Reason. , vol.52 , Issue.1 , pp. 92-109
    • Masson, M.-H.1    Denoeux, T.2
  • 31
    • 36749023291 scopus 로고    scopus 로고
    • ECM: An evidential version of the fuzzy c-means algorithm
    • M.-H. Masson, T. Denoeux, ECM: an evidential version of the fuzzy c-means algorithm, Pattern Recogn. 41 (4) (2008) 1384-1397.
    • (2008) Pattern Recogn , vol.41 , Issue.4 , pp. 1384-1397
    • Masson, M.-H.1    Denoeux, T.2
  • 32
    • 67649090202 scopus 로고    scopus 로고
    • RECM: Relational evidential c-means algorithm
    • M.-H. Masson, T. Denoeux, RECM: relational evidential c-means algorithm, Pattern Recogn. Lett. 30 (2009) 1015-1026.
    • (2009) Pattern Recogn. Lett. , vol.30 , pp. 1015-1026
    • Masson, M.-H.1    Denoeux, T.2
  • 33
    • 79551686194 scopus 로고    scopus 로고
    • Classifier fusion in the dempster-shafer framework using optimized t-norm based combination rules
    • B. Quost, M.-H. Masson, T. Denoeux, Classifier fusion in the Dempster-Shafer framework using optimized t-norm based combination rules, Int. J. Approx. Reason. 52 (3) (2011) 353-374.
    • (2011) Int. J. Approx. Reason. , vol.52 , Issue.3 , pp. 353-374
    • Quost, B.1    Masson, M.-H.2    Denoeux, T.3
  • 35
    • 0028406490 scopus 로고
    • The transferable belief model
    • P. Smets, R. Kennes, The transferable belief model, Artif. Intell. 66 (1994) 191-243.
    • (1994) Artif. Intell. , vol.66 , pp. 191-243
    • Smets, P.1    Kennes, R.2
  • 36
    • 0025434991 scopus 로고
    • The combination of evidence in the transferable belief model
    • P. Smets, The combination of evidence in the transferable belief model, IEEE Trans. Pattern Anal. Machine Intell. 12 (5) (1990) 447-458.
    • (1990) IEEE Trans. Pattern Anal. Machine Intell. , vol.12 , Issue.5 , pp. 447-458
    • Smets, P.1
  • 37
    • 84877584476 scopus 로고    scopus 로고
    • Sankaran Mahadevan: A new method to determine basic probability assignment from training data
    • P. Xu, Y. Deng, X. Su, Sankaran Mahadevan: a new method to determine basic probability assignment from training data, Knowl.-Based Syst. 46 (2013) 69-80.
    • (2013) Knowl.-Based Syst. , vol.46 , pp. 69-80
    • Xu, P.1    Deng, Y.2    Su, X.3
  • 38
    • 62949195589 scopus 로고    scopus 로고
    • A K-NN associated fuzzy evidential reasoning classifier with adaptive neighbor selection
    • Melbourne, Florida, USA, November 19-22
    • H. Zhu, O. Basir, A K-NN associated fuzzy evidential reasoning classifier with adaptive neighbor selection, in: Proceedings of the Third IEEE International Conference on Data Mining (ICDM2003), Melbourne, Florida, USA, November 19-22, 2003.
    • (2003) Proceedings of the Third IEEE International Conference on Data Mining (ICDM2003)
    • Zhu, H.1    Basir, O.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.