메뉴 건너뛰기




Volumn 285, Issue 1, 2014, Pages 66-99

A novel Frank-Wolfe algorithm. Analysis and applications to large-scale SVM training

Author keywords

Concave optimization; Frank Wolfe methods; Large scale support vector machines; Learning from massive datasets; Quadratic programming

Indexed keywords

ALGORITHMS; ARTIFICIAL INTELLIGENCE; CLASSIFICATION (OF INFORMATION); COMPUTATIONAL GEOMETRY; LEARNING SYSTEMS; NUMBER THEORY; QUADRATIC PROGRAMMING;

EID: 84926204705     PISSN: 00200255     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.ins.2014.03.059     Document Type: Article
Times cited : (35)

References (66)
  • 1
    • 37549000212 scopus 로고    scopus 로고
    • Linear convergence of a modified frank-wolfe algorithm for computing minimum volume enclosing ellipsoids
    • S. Damla Ahipasaoglu, Sun Peng, Michael Todd, Linear convergence of a modified Frank-Wolfe algorithm for computing minimum volume enclosing ellipsoids, Optim. Methods Softw. 23 (1) (2008) 5-19.
    • (2008) Optim. Methods Softw. , vol.23 , Issue.1 , pp. 5-19
    • Damla Ahipasaoglu, S.1    Sun, P.2    Todd, M.3
  • 4
    • 21144445984 scopus 로고    scopus 로고
    • A conditional gradient method with linear rate of convergence for solving convex linear systems
    • Amir Beck, Marc Teboulle, A conditional gradient method with linear rate of convergence for solving convex linear systems, Math. Methods Oper. Res. 59 (2) (2004) 235-247.
    • (2004) Math. Methods Oper. Res. , vol.59 , Issue.2 , pp. 235-247
    • Beck, A.1    Teboulle, M.2
  • 7
    • 33947180792 scopus 로고    scopus 로고
    • Stochastic learning
    • Olivier Bousquet, Ulrike von Luxburg (eds.) Lecture Notes in Artificial Intelligence, LNAI, Vol. 3176, Springer Verlag
    • Léon Bottou, Stochastic learning, in: Olivier Bousquet, Ulrike von Luxburg (Eds.), Advanced Lectures on Machine Learning, Lecture Notes in Artificial Intelligence, LNAI, vol. 3176, Springer Verlag, 2004, pp. 146-168.
    • (2004) Advanced Lectures on Machine Learning , pp. 146-168
    • Bottou, L.1
  • 8
    • 48849085774 scopus 로고    scopus 로고
    • The tradeoffs of large scale learning
    • Léon Bottou, Olivier Bousquet, The tradeoffs of large scale learning, in: NIPS, 2007.
    • (2007) NIPS
    • Bottou, L.1    Bousquet, O.2
  • 10
    • 39549099914 scopus 로고    scopus 로고
    • Optimal core-sets for balls
    • Mihai Bədoiu, Kenneth Clarkson, Optimal core-sets for balls, Comput. Geomet. 40 (1) (2008) 14-22.
    • (2008) Comput. Geomet. , vol.40 , Issue.1 , pp. 14-22
    • Bədoiu, M.1    Clarkson, K.2
  • 11
  • 13
    • 58449103618 scopus 로고    scopus 로고
    • Coresets, sparse greedy approximation, and the frank-wolfe algorithm
    • SIAM
    • Kenneth Clarkson, Coresets, sparse greedy approximation, and the Frank-Wolfe algorithm, in: Proceedings of SODA'08, SIAM, 2008, pp. 922-931.
    • (2008) Proceedings of SODA'08 , pp. 922-931
    • Clarkson, K.1
  • 14
    • 84870171823 scopus 로고    scopus 로고
    • Sublinear optimization for machine learning
    • Kenneth Clarkson, Elad Hazan, David Woodruff, Sublinear optimization for machine learning, J. ACM 59 (5) (2012).
    • (2012) J. ACM , vol.59 , Issue.5
    • Clarkson, K.1    Hazan, E.2    Woodruff, D.3
  • 15
    • 29644438050 scopus 로고    scopus 로고
    • Statistical comparison of classifiers over multiple data sets
    • Janez Demsar, Statistical comparison of classifiers over multiple data sets, J. Mach. Learn. Res. 7 (2006) 1-30.
    • (2006) J. Mach. Learn. Res. , vol.7 , pp. 1-30
    • Demsar, J.1
  • 16
    • 29144499905 scopus 로고    scopus 로고
    • Working set selection using second order information for training support vector machines
    • Rong-En Fan, Pai-Hsuen Chen, Chih-Jen Lin, Working set selection using second order information for training support vector machines, J. Mach. Learn. Res. 6 (2005) 1889-1918.
    • (2005) J. Mach. Learn. Res. , vol.6 , pp. 1889-1918
    • Fan, R.-E.1    Chen, P.-H.2    Lin, C.-J.3
  • 17
    • 0012126939 scopus 로고
    • Nonlinear programming: Sequential unconstrained minimization techniques
    • reprinted
    • Anthony V. Fiacco, Garth P. McCormick, Nonlinear Programming: Sequential Unconstrained Minimization Techniques, SIAM, 1968 (reprinted 1990).
    • (1968) SIAM
    • Fiacco, A.V.1    McCormick, G.P.2
  • 18
    • 0041494125 scopus 로고    scopus 로고
    • Efficient SVM training using low-rank kernel representations
    • Shai Fine, Katya Scheinberg, Efficient SVM training using low-rank kernel representations, J. Mach. Learn. Res. 2 (2002) 243-264.
    • (2002) J. Mach. Learn. Res. , vol.2 , pp. 243-264
    • Fine, S.1    Scheinberg, K.2
  • 23
    • 0001971618 scopus 로고
    • An algorithm for quadratic programming
    • Marguerite Frank, Philip Wolfe, An algorithm for quadratic programming, Naval Res. Logist. 0-. 1 (1956) 95-110.
    • (1956) Naval Res. Logist. , vol.1 , pp. 95-110
    • Frank, M.1    Wolfe, P.2
  • 24
    • 0000897328 scopus 로고    scopus 로고
    • The kernel-adatron algorithm: A fast and simple learning procedure for support vector machines
    • Morgan Kaufmann Publishers Inc., San Francisco, CA, USA
    • Thilo-Thomas Friess, Nello Cristianini, Colin Campbell, The Kernel-Adatron algorithm: a fast and simple learning procedure for support vector machines, in: Proceedings of the Fifteenth International Conference on Machine Learning, ICML '98, Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 1998, pp. 188-196.
    • (1998) Proceedings of the Fifteenth International Conference on Machine Learning, ICML '98 , pp. 188-196
    • Friess, T.-T.1    Cristianini, N.2    Campbell, C.3
  • 25
    • 84969546968 scopus 로고    scopus 로고
    • A polynomial time conditional gradient algorithm with applications to online and stochastic optimization
    • Dan Garber, Elad Hazan, A polynomial time conditional gradient algorithm with applications to online and stochastic optimization. CoRR, abs/1301.4666, 2013.
    • (2013) CoRR, Abs/1301.4666
    • Garber, D.1    Hazan, E.2
  • 26
    • 70849115298 scopus 로고    scopus 로고
    • Coresets for polytope distance
    • John Hershberger, Efi Fogel (eds.) ACM
    • Bernd Gärtner, Martin Jaggi, Coresets for polytope distance, in: John Hershberger, Efi Fogel (Eds.), Symposium on Computational Geometry, ACM, 2009, pp. 33-42.
    • (2009) Symposium on Computational Geometry , pp. 33-42
    • Gärtner, B.1    Jaggi, M.2
  • 27
    • 0002274728 scopus 로고
    • An iterative procedure for computing the minimum of a quadratic form on a convex set
    • Elmer Gilbert, An iterative procedure for computing the minimum of a quadratic form on a convex set, SIAM J. Control 4 (1) (1966) 61-80.
    • (1966) SIAM J. Control , vol.4 , Issue.1 , pp. 61-80
    • Gilbert, E.1
  • 28
    • 0022717379 scopus 로고
    • Some comments on wolfe's "away step"
    • Jacques Guélat, Patrice Marcotte, Some comments on Wolfe's "away step", Math. Programming 35 (1986) 110-119.
    • (1986) Math. Programming , vol.35 , pp. 110-119
    • Guélat, J.1    Marcotte, P.2
  • 30
    • 51049096780 scopus 로고    scopus 로고
    • Kernel methods in machine learning
    • Thomas Hofmann, Bernhard Schölkopf, Alexander Smola, Kernel methods in machine learning, Ann. Statist. 36 (3) (2008) 1171-1220.
    • (2008) Ann. Statist. , vol.36 , Issue.3 , pp. 1171-1220
    • Hofmann, T.1    Schölkopf, B.2    Smola, A.3
  • 32
    • 0036505670 scopus 로고    scopus 로고
    • A comparison of methods for multiclass support vector machines
    • Chih-Wei Hsu, Chih-Jen Lin, A comparison of methods for multiclass support vector machines, IEEE Trans. Neural Networks 13 (2) (2002) 415-425.
    • (2002) IEEE Trans. Neural Networks , vol.13 , Issue.2 , pp. 415-425
    • Hsu, C.-W.1    Lin, C.-J.2
  • 34
    • 0002714543 scopus 로고    scopus 로고
    • Making large-scale support vector machine learning practical
    • MIT Press
    • Thorsten Joachims, Making large-scale support vector machine learning practical, in: Advances in Kernel Methods: Support Vector Learning, MIT Press, 1999, pp. 169-184.
    • (1999) Advances in Kernel Methods: Support Vector Learning , pp. 169-184
    • Joachims, T.1
  • 36
    • 0033640690 scopus 로고    scopus 로고
    • A fast iterative nearest point algorithm for support vector machine classifier design
    • S.S. Keerthi, S.K. Shevade, C. Bhattacharyya, K.R.K. Murthy, A fast iterative nearest point algorithm for support vector machine classifier design, IEEE Trans. Neural Networks 11 (1) (2000) 124-136.
    • (2000) IEEE Trans. Neural Networks , vol.11 , Issue.1 , pp. 124-136
    • Keerthi, S.S.1    Shevade, S.K.2    Bhattacharyya, C.3    Murthy, K.R.K.4
  • 37
    • 0036163654 scopus 로고    scopus 로고
    • Convergence of a generalized SMO algorithm for SVM classifier design
    • Sathiya Keerthi, Elmer Gilbert, Convergence of a generalized SMO algorithm for SVM classifier design, Mach. Learn. 46 (1-3) (2002) 351-360.
    • (2002) Mach. Learn. , vol.46 , Issue.1-3 , pp. 351-360
    • Keerthi, S.1    Gilbert, E.2
  • 38
    • 79961073716 scopus 로고    scopus 로고
    • AlperYildirim, A linearly convergent linear-time first-order algorithm for support vector classification with a core set result
    • Piyush Kumar, AlperYildirim, A linearly convergent linear-time first-order algorithm for support vector classification with a core set result, INFORMS J. Comput. 23 (3) (2011) 377-391.
    • (2011) INFORMS J. Comput. , vol.23 , Issue.3 , pp. 377-391
    • Kumar, P.1
  • 42
    • 0016025580 scopus 로고
    • Finding the point of a polyhedron closest to the origin
    • B.F. Mitchell, V.F. Dem'yanov, V.N. Malozemov, Finding the point of a polyhedron closest to the origin, SIAM J. Control 12 (1) (1974) 19-26.
    • (1974) SIAM J. Control , vol.12 , Issue.1 , pp. 19-26
    • Mitchell, B.F.1    Dem'yanov, V.F.2    Malozemov, V.N.3
  • 44
    • 84870243198 scopus 로고    scopus 로고
    • Fast stochastic frank-wolfe algorithms for nonlinear SVMs
    • Hua Ouyang, Alexander Gray, Fast stochastic Frank-Wolfe algorithms for nonlinear SVMs, in: SDM, 2010, pp. 245-256.
    • (2010) SDM , pp. 245-256
    • Ouyang, H.1    Gray, A.2
  • 45
    • 0003120218 scopus 로고    scopus 로고
    • Fast training of support vector machines using sequential minimal optimization
    • MIT Press
    • John Platt, Fast training of support vector machines using sequential minimal optimization, in: Advances in Kernel Methods: Support Vector Learning, MIT Press, 1999, pp. 185-208.
    • (1999) Advances in Kernel Methods: Support Vector Learning , pp. 185-208
    • Platt, J.1
  • 46
    • 84965102247 scopus 로고    scopus 로고
    • R Foundation for Statistical Computing, Vienna, Austria
    • R Core Team, R: A Language and Environment for Statistical Computing, R Foundation for Statistical Computing, Vienna, Austria, 2012, ISBN 3-900051-07-0.
    • (2012) A Language and Environment for Statistical Computing
  • 48
    • 0020165423 scopus 로고
    • Generalized equations and their solutions, Part II: Applications to nonlinear programming
    • Springer, Berlin, Heidelberg
    • Stephen Robinson, Generalized equations and their solutions, part II: applications to nonlinear programming, Optimality and Stability in Mathematical Programming, Mathematical Programming Studies, vol. 19, Springer, Berlin, Heidelberg, 1982, pp. 200-221.
    • (1982) Optimality and Stability in Mathematical Programming, Mathematical Programming Studies , vol.19 , pp. 200-221
    • Robinson, S.1
  • 49
    • 33745798002 scopus 로고    scopus 로고
    • An efficient implementation of an active set method for SVMs
    • Katya Scheinberg, An efficient implementation of an active set method for SVMs, J. Mach. Learn. Res. 7 (2006) 2237-2257.
    • (2006) J. Mach. Learn. Res. , vol.7 , pp. 2237-2257
    • Scheinberg, K.1
  • 53
    • 84859418371 scopus 로고    scopus 로고
    • Online learning and online convex optimization
    • Shai Shalev-Shwartz, Online learning and online convex optimization, Found. Trends Mach. Learn. 4 (2) (2012) 107-194.
    • (2012) Found. Trends Mach. Learn. , vol.4 , Issue.2 , pp. 107-194
    • Shalev-Shwartz, S.1
  • 54
    • 79952748054 scopus 로고    scopus 로고
    • Pegasos: Primal estimated sub-gradient solver for SVM
    • Shai Shalev-Shwartz, Yoram Singer, Nathan Srebro, Andrew Cotter, Pegasos: primal estimated sub-gradient solver for SVM, Math. Program. 127 (1) (2011) 3-30.
    • (2011) Math. Program. , vol.127 , Issue.1 , pp. 3-30
    • Shalev-Shwartz, S.1    Singer, Y.2    Srebro, N.3    Cotter, A.4
  • 55
    • 84875134236 scopus 로고    scopus 로고
    • Stochastic dual coordinate ascent methods for regularized loss minimization
    • Shai Shalev-Shwartz, Tong Zhang, Stochastic dual coordinate ascent methods for regularized loss minimization, J. Mach. Learn. Res. 14 (2013) 567-599.
    • (2013) J. Mach. Learn. Res. , vol.14 , pp. 567-599
    • Shalev-Shwartz, S.1    Zhang, T.2
  • 56
    • 4644354708 scopus 로고    scopus 로고
    • Sparseness of support vector machines
    • Ingo Steinwart, Sparseness of support vector machines, J. Mach. Learn. Res. 4 (2003) 1071-1105.
    • (2003) J. Mach. Learn. Res. , vol.4 , pp. 1071-1105
    • Steinwart, I.1
  • 58
    • 21844440579 scopus 로고    scopus 로고
    • Core vector machines: Fast SVM training on very large data sets
    • Ivor Tsang, James Kwok, Pak-Ming Cheung, Core vector machines: fast SVM training on very large data sets, J. Mach. Learn. Res. 6 (2005) 363-392.
    • (2005) J. Mach. Learn. Res. , vol.6 , pp. 363-392
    • Tsang, I.1    Kwok, J.2    Cheung, P.-M.3
  • 60
    • 24944537843 scopus 로고    scopus 로고
    • Large margin methods for structured and interdependent output variables
    • Ioannis Tsochantaridis, Thorsten Joachims, Thomas Hofmann, Yasemin Altun, Large margin methods for structured and interdependent output variables, J. Mach. Learn. Res. 6 (2005) 1453-1484.
    • (2005) J. Mach. Learn. Res. , vol.6 , pp. 1453-1484
    • Tsochantaridis, I.1    Joachims, T.2    Hofmann, T.3    Altun, Y.4
  • 61
    • 77953621229 scopus 로고    scopus 로고
    • An online core vector machine with adaptive MEB adjustment
    • Di Wang, Bo Zhang, Peng Zhang, Hong Qiao, An online core vector machine with adaptive MEB adjustment, Pattern Recogni. 43 (2010) 3468-3482.
    • (2010) Pattern Recogni. , vol.43 , pp. 3468-3482
    • Wang, D.1    Zhang, B.2    Zhang, P.3    Qiao, H.4
  • 62
    • 0001945554 scopus 로고
    • Convergence theory in nonlinear programming
    • J. Abadie (Ed.) North-Holland, Amsterdam
    • Philip Wolfe, Convergence theory in nonlinear programming, in: J. Abadie (Ed.), Integer and Nonlinear Programming, North-Holland, Amsterdam, 1970, pp. 1-36.
    • (1970) Integer and Nonlinear Programming , pp. 1-36
    • Wolfe, P.1
  • 63
    • 79956159699 scopus 로고    scopus 로고
    • Exploiting separability in large scale linear support vector machine training
    • Kristian Woodsend, Jacek Gondzio, Exploiting separability in large scale linear support vector machine training, Comput. Optim. Appl. 29 (2011) 241-269.
    • (2011) Comput. Optim. Appl. , vol.29 , pp. 241-269
    • Woodsend, K.1    Gondzio, J.2
  • 64
    • 69649088936 scopus 로고    scopus 로고
    • Two algorithms for the minimum enclosing ball problem
    • Emre Alper Yildirim, Two algorithms for the minimum enclosing ball problem, SIAM J. Optim. 19 (3) (2008) 1368-1391.
    • (2008) SIAM J. Optim. , vol.19 , Issue.3 , pp. 1368-1391
    • Yildirim, E.A.1
  • 65
    • 84865422696 scopus 로고    scopus 로고
    • Recent advances of large-scale linear classification
    • Guo-Xun Yuan, Chia-Hua Ho, Chih-Jen Lin, Recent advances of large-scale linear classification, Proc. IEEE 100 (9) (2012) 2584-2603.
    • (2012) Proc. IEEE , vol.100 , Issue.9 , pp. 2584-2603
    • Yuan, G.-X.1    Ho, C.-H.2    Lin, C.-J.3
  • 66
    • 0037355948 scopus 로고    scopus 로고
    • Sequential greedy approximation for certain convex optimization problems
    • Tong Zhang, Sequential greedy approximation for certain convex optimization problems, IEEE Trans. Inf. Theory 49 (3) (2003) 682-691.
    • (2003) IEEE Trans. Inf. Theory , vol.49 , Issue.3 , pp. 682-691
    • Zhang, T.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.