메뉴 건너뛰기




Volumn 62, Issue 4, 2015, Pages 1159-1168

Assess Sleep Stage by Modern Signal Processing Techniques

Author keywords

breathing pattern variability; Empirical Intrinsic Geometry (EIG); Sleep Stage; Synchrosqueezing transform (ST)

Indexed keywords

ELECTROENCEPHALOGRAPHY; RADIAL BASIS FUNCTION NETWORKS; SIGNAL PROCESSING; SLEEP RESEARCH; SUPPORT VECTOR MACHINES;

EID: 84925847519     PISSN: 00189294     EISSN: 15582531     Source Type: Journal    
DOI: 10.1109/TBME.2014.2375292     Document Type: Article
Times cited : (115)

References (33)
  • 4
    • 0034331114 scopus 로고    scopus 로고
    • Interobserver agreement among sleep scorers from different centers in a large dataset
    • R. Norman et al., "Interobserver agreement among sleep scorers from different centers in a large dataset," Sleep, vol. 23, no. 7, pp. 901-908, 2000.
    • (2000) Sleep , vol.23 , Issue.7 , pp. 901-908
    • Norman, R.1
  • 5
    • 84885418140 scopus 로고    scopus 로고
    • Automatic classification of sleep stages based on the time-frequency image of EEGsignals
    • V. Bajaj and R. B. Pachori, "Automatic classification of sleep stages based on the time-frequency image of EEGsignals," Comput.Methods Programs Biomed., vol. 112, no. 3, pp. 320-328, 2013.
    • (2013) Comput.Methods Programs Biomed. , vol.112 , Issue.3 , pp. 320-328
    • Bajaj, V.1    Pachori, R.B.2
  • 6
    • 27744537035 scopus 로고    scopus 로고
    • Entropies for detection of epilepsy in EEG
    • N.Kannathal et al., "Entropies for detection of epilepsy in EEG," Comput. Methods Programs Biomed., vol. 80, pp. 187-194, 2005.
    • (2005) Comput. Methods Programs Biomed. , vol.80 , pp. 187-194
    • Kannathal, N.1
  • 7
    • 0001423234 scopus 로고
    • Time-frequency analysis of electroencephalogram series
    • S. Blanco et al., "Time-frequency analysis of electroencephalogram series,"Phys. Rev. E, vol. 51, no. 3, pp. 2624-2631, 1995.
    • (1995) Phys. Rev. E , vol.51 , Issue.3 , pp. 2624-2631
    • Blanco, S.1
  • 8
    • 80855164495 scopus 로고    scopus 로고
    • EEG non-linear feature extraction using correlation dimension and hurst exponent
    • S. Geng et al., "EEG non-linear feature extraction using correlation dimension and hurst exponent," Neurological Res., vol. 33, no. 9, pp. 908-912, 2011.
    • (2011) Neurological Res. , vol.33 , Issue.9 , pp. 908-912
    • Geng, S.1
  • 9
    • 84881088941 scopus 로고    scopus 로고
    • Empirical intrinsic geometry for nonlinear modeling and time series filtering
    • R. Talmon and R. Coifman, "Empirical intrinsic geometry for nonlinear modeling and time series filtering," Proc. Nat. Acad. Sci., vol. 110, no. 31, pp. 12 535-12 540, 2013.
    • (2013) Proc. Nat. Acad. Sci. , vol.110 , Issue.31 , pp. 12535-12540
    • Talmon, R.1    Coifman, R.2
  • 10
    • 84925860415 scopus 로고    scopus 로고
    • Intrinsic modeling of stochastic dynamical systems using empirical geometry
    • Tech. Rep.
    • R. Talmon and R. R. Coifman, "Intrinsic modeling of stochastic dynamical systems using empirical geometry," Appl. Comput. Harmon. Anal., 2014, Tech. Rep. YALEU/DCS/TR1467.
    • (2014) Appl. Comput. Harmon. Anal.
    • Talmon, R.1    Coifman, R.R.2
  • 11
    • 84877016881 scopus 로고    scopus 로고
    • Identifying preseizure state in intracranial EEG data using diffusion kernels
    • D. Duncan et al., "Identifying preseizure state in intracranial EEG data using diffusion kernels," Math. Biosci. Eng., vol. 10, pp. 579-590, 2013.
    • (2013) Math. Biosci. Eng. , vol.10 , pp. 579-590
    • Duncan, D.1
  • 12
    • 84925856366 scopus 로고    scopus 로고
    • Manifold learning for latent variable inference in dynamical systems
    • Tech. Report
    • R. Talmon et al., "Manifold learning for latent variable inference in dynamical systems," Submitted, 2014, Tech. Report YALEU/DCS/TR1491.
    • (2014) Submitted
    • Talmon, R.1
  • 14
    • 84870857648 scopus 로고    scopus 로고
    • Sleep-wake detection based on respiratory signal acquired through a pressure bed sensor
    • G. Guerrero-Mora et al., "Sleep-wake detection based on respiratory signal acquired through a pressure bed sensor," in Proc. Annu. Int. Conf. Eng. Med. Biol. Soc., 2012, pp. 3452-3455.
    • Proc. Annu. Int. Conf. Eng. Med. Biol. Soc., 2012 , pp. 3452-3455
    • Guerrero-Mora, G.1
  • 15
    • 84860707168 scopus 로고    scopus 로고
    • A simple sleep stage identification technique for incorporation in inexpensive electronic sleep screening devices
    • J. Sloboda and M. Das, "A simple sleep stage identification technique for incorporation in inexpensive electronic sleep screening devices," in Proc. IEEE Nat. Aerosp. Electron. Conf., 2011, pp. 21-24.
    • Proc. IEEE Nat. Aerosp. Electron. Conf., 2011 , pp. 21-24
    • Sloboda, J.1    Das, M.2
  • 16
    • 84878555758 scopus 로고    scopus 로고
    • Instantaneous frequency and wave shape functions (I)
    • H.-T. Wu, "Instantaneous frequency and wave shape functions (I)," Appl. Comput. Harmon. Anal., vol. 35, pp. 181-199, 2013.
    • (2013) Appl. Comput. Harmon. Anal. , vol.35 , pp. 181-199
    • Wu, H.-T.1
  • 17
    • 84900032456 scopus 로고    scopus 로고
    • Nonparametric and adaptive modeling of dynamic seasonality and trend with heteroscedastic and dependent errors
    • Y.-C. Chen et al., "Nonparametric and adaptive modeling of dynamic seasonality and trend with heteroscedastic and dependent errors," J. Roy. Stat. Soc. B, vol. 76, pp. 651-682, 2014.
    • (2014) J. Roy. Stat. Soc. B , vol.76 , pp. 651-682
    • Chen, Y.-C.1
  • 18
    • 85032750876 scopus 로고    scopus 로고
    • Diffusion maps for signal processing: A deeper look at manifold-learning techniques based on kernels and graphs
    • Jul.
    • R. Talmon et al., "Diffusion maps for signal processing: A deeper look at manifold-learning techniques based on kernels and graphs," IEEE Trans. Signal Process., vol. 30, no. 4, pp. 75-86, Jul. 2013.
    • (2013) IEEE Trans. Signal Process. , vol.30 , Issue.4 , pp. 75-86
    • Talmon, R.1
  • 19
    • 78751584911 scopus 로고    scopus 로고
    • Synchrosqueezed wavelet transforms: An empirical mode decomposition-like tool
    • I. Daubechies et al., "Synchrosqueezed wavelet transforms: An empirical mode decomposition-like tool," Appl. Comput. Harmon. Anal., vol. 30, pp. 243-261, 2011.
    • (2011) Appl. Comput. Harmon. Anal. , vol.30 , pp. 243-261
    • Daubechies, I.1
  • 20
    • 0031764633 scopus 로고    scopus 로고
    • Approximate entropy of respiratory rate and tidal volume during weaning frommechanical ventilation
    • M. Engoren, "Approximate entropy of respiratory rate and tidal volume during weaning frommechanical ventilation," Critical CareMed., vol. 26, pp. 1817-1823, 1998.
    • (1998) Critical CareMed. , vol.26 , pp. 1817-1823
    • Engoren, M.1
  • 21
    • 0034284887 scopus 로고    scopus 로고
    • Breathing pattern in humans: Diversity and individuality
    • G. Benchetrit, "Breathing pattern in humans: Diversity and individuality,"Respir. Physiol., vol. 122, no. 2/3, pp. 123-129, 2000.
    • (2000) Respir. Physiol. , vol.122 , Issue.2-3 , pp. 123-129
    • Benchetrit, G.1
  • 22
    • 33748099508 scopus 로고    scopus 로고
    • Reduced breathing variability as a predictor of unsuccessful patient separation from mechanical ventilation
    • M. Wysocki et al., "Reduced breathing variability as a predictor of unsuccessful patient separation from mechanical ventilation," Critical Care Med., vol. 34, pp. 2076-2083, 2006.
    • (2006) Critical Care Med. , vol.34 , pp. 2076-2083
    • Wysocki, M.1
  • 23
    • 84896855886 scopus 로고    scopus 로고
    • Evaluating physiological dynamics via synchrosqueezing: Prediction of ventilator weaning
    • Mar.
    • H.-T. Wu et al., "Evaluating physiological dynamics via synchrosqueezing: Prediction of ventilator weaning," IEEE Trans. Biomed. Eng., vol. 61, no. 3, pp. 736-744, Mar. 2013.
    • (2013) IEEE Trans. Biomed. Eng. , vol.61 , Issue.3 , pp. 736-744
    • Wu, H.-T.1
  • 24
    • 48349109325 scopus 로고    scopus 로고
    • Non-linear independent component analysis with diffusion maps
    • A. Singer and R. R. Coifman, "Non-linear independent component analysis with diffusion maps," Appl. Comput. Harmon. Anal., vol. 25, no. 2, pp. 226-239, 2008.
    • (2008) Appl. Comput. Harmon. Anal. , vol.25 , Issue.2 , pp. 226-239
    • Singer, A.1    Coifman, R.R.2
  • 26
    • 84864324516 scopus 로고    scopus 로고
    • Group invariant scattering
    • S. Mallat, "Group invariant scattering," Pure Appl. Math., vol. 10, no. 65, pp. 1331-1398, 2012.
    • (2012) Pure Appl. Math. , vol.10 , Issue.65 , pp. 1331-1398
    • Mallat, S.1
  • 27
    • 84925881326 scopus 로고    scopus 로고
    • Multiscale intermittent process analysis by scattering
    • arXiv:1311.4104
    • J. Bruna et al., "Multiscale intermittent process analysis by scattering,"Submitted, arXiv:1311.4104, 2013.
    • (2013) Submitted
    • Bruna, J.1
  • 29
    • 84925846790 scopus 로고    scopus 로고
    • Spectral convergence of the connection laplacian from random samples
    • A. Singer and H.-T.Wu, "Spectral convergence of the connection laplacian from random samples," Submitted, 2013.
    • (2013) Submitted
    • Singer, A.1    Wu, H.-T.2
  • 30
    • 77957606259 scopus 로고    scopus 로고
    • On information plus noise kernel random matrices
    • N. El Karoui, "On information plus noise kernel random matrices," Ann. Stat., vol. 38, no. 5, pp. 3191-3216, 2010.
    • (2010) Ann. Stat. , vol.38 , Issue.5 , pp. 3191-3216
    • El Karoui, N.1
  • 31
    • 84925860813 scopus 로고    scopus 로고
    • Connection graph Laplacian methods can be made robust to noise
    • accepted for Publication
    • N. El Karoui and H.-T.Wu, "Connection graph Laplacian methods can be made robust to noise," Ann. Stat., 2014, accepted for Publication.
    • (2014) Ann. Stat.
    • El Karoui, N.1    Wu, H.-T.2
  • 33
    • 56749117943 scopus 로고    scopus 로고
    • In defense of one-vs-all classification
    • R. Rifkin and A. Klautau, "In defense of one-vs-all classification," J. Mach. Learn. Res., vol. 5, pp. 101-141, 2004.
    • (2004) J. Mach. Learn. Res. , vol.5 , pp. 101-141
    • Rifkin, R.1    Klautau, A.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.