-
1
-
-
33749834322
-
Synthesis of transportation fuels from biomass: chemistry, catalysts, and engineering
-
Huber G.W., Iborra S., Corma A. Synthesis of transportation fuels from biomass: chemistry, catalysts, and engineering. Chem Rev 2006, 106:4044-4098.
-
(2006)
Chem Rev
, vol.106
, pp. 4044-4098
-
-
Huber, G.W.1
Iborra, S.2
Corma, A.3
-
2
-
-
20444400628
-
Cellulose: fascinating biopolymer and sustainable raw material
-
Klemm D., Heublein B., Fink H., Bohn A. Cellulose: fascinating biopolymer and sustainable raw material. Angew Chem Int Ed 2005, 44:3358-3393.
-
(2005)
Angew Chem Int Ed
, vol.44
, pp. 3358-3393
-
-
Klemm, D.1
Heublein, B.2
Fink, H.3
Bohn, A.4
-
3
-
-
79954506242
-
Recent advances in the catalytic conversion of cellulose
-
Van de Vyver S., Geboers J., Jacobs P.A., Sels B.F. Recent advances in the catalytic conversion of cellulose. ChemCatChem 2011, 3:82-94.
-
(2011)
ChemCatChem
, vol.3
, pp. 82-94
-
-
Van de Vyver, S.1
Geboers, J.2
Jacobs, P.A.3
Sels, B.F.4
-
4
-
-
54249091966
-
Direct catalytic conversion of cellulose into ethylene glycol using nickel-promoted tungsten carbide catalysts
-
Ji N., Zhang T., Zheng M., Wang A., Wang H., Wang X., et al. Direct catalytic conversion of cellulose into ethylene glycol using nickel-promoted tungsten carbide catalysts. Angew Chem Int Ed 2008, 47:8510-8513.
-
(2008)
Angew Chem Int Ed
, vol.47
, pp. 8510-8513
-
-
Ji, N.1
Zhang, T.2
Zheng, M.3
Wang, A.4
Wang, H.5
Wang, X.6
-
5
-
-
84863337762
-
Tungsten trioxide promoted selective conversion of cellulose into propylene glycol and ethylene glycol on a ruthenium catalyst
-
Liu Y., Luo C., Liu H. Tungsten trioxide promoted selective conversion of cellulose into propylene glycol and ethylene glycol on a ruthenium catalyst. Angew Chem Int Ed 2012, 51:3249-3253.
-
(2012)
Angew Chem Int Ed
, vol.51
, pp. 3249-3253
-
-
Liu, Y.1
Luo, C.2
Liu, H.3
-
7
-
-
81555205658
-
Lowering the temperature of solid oxide fuel cells
-
Wachsman E.D., Lee K.T. Lowering the temperature of solid oxide fuel cells. Science 2011, 334:935-939.
-
(2011)
Science
, vol.334
, pp. 935-939
-
-
Wachsman, E.D.1
Lee, K.T.2
-
8
-
-
84893097761
-
Enhancing SOFC cathode performance by surface modification through infiltration
-
Ding D., Li X., Lai S., Gerdes K., Liu M. Enhancing SOFC cathode performance by surface modification through infiltration. Energy Environ Sci 2014, 7:552-575.
-
(2014)
Energy Environ Sci
, vol.7
, pp. 552-575
-
-
Ding, D.1
Li, X.2
Lai, S.3
Gerdes, K.4
Liu, M.5
-
10
-
-
84885630974
-
Progress in solid oxide fuel cells with nickel-based anodes operating on methane and related fuels
-
Wang W., Su C., Wu Y.Z., Ran R., Shao Z.P. Progress in solid oxide fuel cells with nickel-based anodes operating on methane and related fuels. Chem Rev 2013, 113:8104-8151.
-
(2013)
Chem Rev
, vol.113
, pp. 8104-8151
-
-
Wang, W.1
Su, C.2
Wu, Y.Z.3
Ran, R.4
Shao, Z.P.5
-
11
-
-
79952385106
-
A functional layer for direct use of hydrocarbon fuel in low temperature solid-oxide fuel cells
-
Suzuki T., Yamaguchi T., Hamamoto K., Fujishiro Y., Awano M., Sammes N. A functional layer for direct use of hydrocarbon fuel in low temperature solid-oxide fuel cells. Energy Environ Sci 2011, 4:940-943.
-
(2011)
Energy Environ Sci
, vol.4
, pp. 940-943
-
-
Suzuki, T.1
Yamaguchi, T.2
Hamamoto, K.3
Fujishiro, Y.4
Awano, M.5
Sammes, N.6
-
12
-
-
79959563524
-
Promotion of water-mediated carbon removal by nanostructured barium oxide/nickel interfaces in solid oxide fuel cells
-
Yang L., Choi Y., Qin W., Chen H., Blinn K., Liu M.F., et al. Promotion of water-mediated carbon removal by nanostructured barium oxide/nickel interfaces in solid oxide fuel cells. Nat Commun 2011, 2:357.
-
(2011)
Nat Commun
, vol.2
, pp. 357
-
-
Yang, L.1
Choi, Y.2
Qin, W.3
Chen, H.4
Blinn, K.5
Liu, M.F.6
-
13
-
-
84906260212
-
Hydrogen tungsten bronze as a decoking agent for long-life, natural gas-fueled solid oxide fuel cells
-
Yoon D., Manthiram A. Hydrogen tungsten bronze as a decoking agent for long-life, natural gas-fueled solid oxide fuel cells. Energy Environ Sci 2014, 7:3069-3076.
-
(2014)
Energy Environ Sci
, vol.7
, pp. 3069-3076
-
-
Yoon, D.1
Manthiram, A.2
-
14
-
-
84904424303
-
δ enhanced coking-free on-cell reforming for direct-methane solid oxide fuel cells
-
δ enhanced coking-free on-cell reforming for direct-methane solid oxide fuel cells. J Mater Chem A 2014, 2:12576-12582.
-
(2014)
J Mater Chem A
, vol.2
, pp. 12576-12582
-
-
Hua, B.1
Li, M.2
Pu, J.3
Chi, B.4
Jian, L.5
-
15
-
-
82555168539
-
3 composite oxide as an active anode for direct hydrocarbon-type solid oxide fuel cells
-
3 composite oxide as an active anode for direct hydrocarbon-type solid oxide fuel cells. J Am Chem Soc 2011, 133:19399-19407.
-
(2011)
J Am Chem Soc
, vol.133
, pp. 19399-19407
-
-
Shin, T.H.1
Ida, S.2
Ishihara, T.3
-
16
-
-
84897781407
-
A NiFeCu alloy anode catalyst for direct-methane solid oxide fuel cells
-
Wang W., Zhu H., Yang G., Park H.J., Jung D.W., Kwak C., et al. A NiFeCu alloy anode catalyst for direct-methane solid oxide fuel cells. J Power Sources 2014, 258:134-141.
-
(2014)
J Power Sources
, vol.258
, pp. 134-141
-
-
Wang, W.1
Zhu, H.2
Yang, G.3
Park, H.J.4
Jung, D.W.5
Kwak, C.6
-
17
-
-
84878656875
-
On the active surface state of nickel-ceria solid oxide fuel cell anodes during methane electrooxidation
-
Papaefthimiou V., Shishkin M., Niakolas D.K., Athanasiou M., Law Y.T., Arrigo R., et al. On the active surface state of nickel-ceria solid oxide fuel cell anodes during methane electrooxidation. Adv Energy Mater 2013, 3:762-769.
-
(2013)
Adv Energy Mater
, vol.3
, pp. 762-769
-
-
Papaefthimiou, V.1
Shishkin, M.2
Niakolas, D.K.3
Athanasiou, M.4
Law, Y.T.5
Arrigo, R.6
-
18
-
-
84920666275
-
In situ catalyzed Boudouard reaction of coal char for solid oxide-based carbon fuel cells with improved performance
-
Jiao Y., Tian W., Chen H., Shi H., Yang B., Li C., et al. In situ catalyzed Boudouard reaction of coal char for solid oxide-based carbon fuel cells with improved performance. Appl Energy 2015, 141:200-208.
-
(2015)
Appl Energy
, vol.141
, pp. 200-208
-
-
Jiao, Y.1
Tian, W.2
Chen, H.3
Shi, H.4
Yang, B.5
Li, C.6
-
19
-
-
84907225314
-
Achieving high performance in intermediate temperature direct carbon fuel cells with renewable carbon as a fuel source
-
Hao W., He X., Mi Y. Achieving high performance in intermediate temperature direct carbon fuel cells with renewable carbon as a fuel source. Appl Energy 2014, 135:174-181.
-
(2014)
Appl Energy
, vol.135
, pp. 174-181
-
-
Hao, W.1
He, X.2
Mi, Y.3
-
20
-
-
84900829487
-
Coking suppression in solid oxide fuel cells operating on ethanol by applying pyridine as fuel additive
-
Wang W., Wang F., Ran R., Park H.J., Jung D.W., Kwak C., et al. Coking suppression in solid oxide fuel cells operating on ethanol by applying pyridine as fuel additive. J Power Sources 2014, 265:20-29.
-
(2014)
J Power Sources
, vol.265
, pp. 20-29
-
-
Wang, W.1
Wang, F.2
Ran, R.3
Park, H.J.4
Jung, D.W.5
Kwak, C.6
-
21
-
-
73549086345
-
Glycerol as a bioderived sustainable fuel for solid-oxide fuel cells with internal reforming
-
Won J.Y., Sohn H.J., Song R.H., Woo S.I. Glycerol as a bioderived sustainable fuel for solid-oxide fuel cells with internal reforming. ChemSusChem 2009, 2:1028-1031.
-
(2009)
ChemSusChem
, vol.2
, pp. 1028-1031
-
-
Won, J.Y.1
Sohn, H.J.2
Song, R.H.3
Woo, S.I.4
-
22
-
-
84879531536
-
Renewable acetic acid in combination with solid oxide fuel cells for sustainable clean electric power generation
-
Su C., Wang W., Ran R., Shao Z.P., Tade M.O., Liu S.M. Renewable acetic acid in combination with solid oxide fuel cells for sustainable clean electric power generation. J Mater Chem A 2013, 1:5620-5627.
-
(2013)
J Mater Chem A
, vol.1
, pp. 5620-5627
-
-
Su, C.1
Wang, W.2
Ran, R.3
Shao, Z.P.4
Tade, M.O.5
Liu, S.M.6
-
23
-
-
79959819286
-
Efficiency analyses of ethanol-fueled solid oxide fuel cell power system
-
Hong W., Yen T., Chung T., Huang C., Chen B. Efficiency analyses of ethanol-fueled solid oxide fuel cell power system. Appl Energy 2011, 88:3990-3998.
-
(2011)
Appl Energy
, vol.88
, pp. 3990-3998
-
-
Hong, W.1
Yen, T.2
Chung, T.3
Huang, C.4
Chen, B.5
-
24
-
-
79451474016
-
Glycerol oxidation in solid oxide fuel cells based on a Ni-perovskite electrocatalyst
-
Lo Faro M., Minutoli M., Monforte G., Antonucci V., Aricò A.S. Glycerol oxidation in solid oxide fuel cells based on a Ni-perovskite electrocatalyst. Biomass Bioenergy 2011, 35:1075-1084.
-
(2011)
Biomass Bioenergy
, vol.35
, pp. 1075-1084
-
-
Lo Faro, M.1
Minutoli, M.2
Monforte, G.3
Antonucci, V.4
Aricò, A.S.5
-
25
-
-
84860378810
-
Nickel zirconia cerate cermet for catalytic partial oxidation of ethanol in a solid oxide fuel cell system
-
Wang W., Su C., Zheng T., Liao M., Shao Z.P. Nickel zirconia cerate cermet for catalytic partial oxidation of ethanol in a solid oxide fuel cell system. Int J Hydrogen Energy 2012, 37:8603-8612.
-
(2012)
Int J Hydrogen Energy
, vol.37
, pp. 8603-8612
-
-
Wang, W.1
Su, C.2
Zheng, T.3
Liao, M.4
Shao, Z.P.5
-
26
-
-
84863110334
-
An all perovskite direct methanol solid oxide fuel cell with high resistance to carbon formation at the anode
-
Li H., Tian Y., Wang Z., Qie F., Li Y. An all perovskite direct methanol solid oxide fuel cell with high resistance to carbon formation at the anode. RSC Adv 2012, 2:3857-3863.
-
(2012)
RSC Adv
, vol.2
, pp. 3857-3863
-
-
Li, H.1
Tian, Y.2
Wang, Z.3
Qie, F.4
Li, Y.5
-
27
-
-
84906727176
-
Direct methanol utilization in intermediate temperature liquid-tin anode solid oxide fuel cells
-
Hu B., Keane M., Patil K., Mahapatra M.K., Pasaogullari U., Singh P. Direct methanol utilization in intermediate temperature liquid-tin anode solid oxide fuel cells. Appl Energy 2014, 134:342-348.
-
(2014)
Appl Energy
, vol.134
, pp. 342-348
-
-
Hu, B.1
Keane, M.2
Patil, K.3
Mahapatra, M.K.4
Pasaogullari, U.5
Singh, P.6
-
29
-
-
84903459095
-
Nickel-based anode with water storage capability to mitigate carbon deposition for direct ethanol solid oxide fuel cells
-
Wang W., Su C., Ran R., Zhao B.T., Shao Z.P., Tade M.O., et al. Nickel-based anode with water storage capability to mitigate carbon deposition for direct ethanol solid oxide fuel cells. ChemSusChem 2014, 7:1719-1728.
-
(2014)
ChemSusChem
, vol.7
, pp. 1719-1728
-
-
Wang, W.1
Su, C.2
Ran, R.3
Zhao, B.T.4
Shao, Z.P.5
Tade, M.O.6
-
30
-
-
84859416719
-
Role of silver current collector on the operational stability of selected cobalt-containing oxide electrodes for oxygen reduction reaction
-
Chen Y.B., Wang F.C., Chen D.J., Dong F.F., Park H.J., Kwak C., et al. Role of silver current collector on the operational stability of selected cobalt-containing oxide electrodes for oxygen reduction reaction. J Power Sources 2012, 210:146-153.
-
(2012)
J Power Sources
, vol.210
, pp. 146-153
-
-
Chen, Y.B.1
Wang, F.C.2
Chen, D.J.3
Dong, F.F.4
Park, H.J.5
Kwak, C.6
-
31
-
-
61549136304
-
Hydrogen production via reforming of the aqueous phase of bio-oil over Ni/olivine catalysts in a spouted bed reactor
-
Kechagiopoulos P.N., Voutetakis S.S., Lemonidou A.A., Vasalos I.A. Hydrogen production via reforming of the aqueous phase of bio-oil over Ni/olivine catalysts in a spouted bed reactor. Ind Eng Chem Res 2009, 48:1400-1408.
-
(2009)
Ind Eng Chem Res
, vol.48
, pp. 1400-1408
-
-
Kechagiopoulos, P.N.1
Voutetakis, S.S.2
Lemonidou, A.A.3
Vasalos, I.A.4
-
32
-
-
34548130677
-
Sustainable hydrogen production via reforming of ethylene glycol using a novel spouted bed reactor
-
Kechagiopoulos P.N., Voutetakis S.S., Lemonidou A.A., Vasalos I.A. Sustainable hydrogen production via reforming of ethylene glycol using a novel spouted bed reactor. Catal Today 2007, 127:246-255.
-
(2007)
Catal Today
, vol.127
, pp. 246-255
-
-
Kechagiopoulos, P.N.1
Voutetakis, S.S.2
Lemonidou, A.A.3
Vasalos, I.A.4
-
34
-
-
77951022338
-
Proton-conducting fuel cells operating on hydrogen, ammonia and hydrazine at intermediate temperatures
-
Lin Y., Ran R., Guo Y., Zhou W., Cai R., Wang J., et al. Proton-conducting fuel cells operating on hydrogen, ammonia and hydrazine at intermediate temperatures. Int J Hydrogen Energy 2010, 35:2637-2642.
-
(2010)
Int J Hydrogen Energy
, vol.35
, pp. 2637-2642
-
-
Lin, Y.1
Ran, R.2
Guo, Y.3
Zhou, W.4
Cai, R.5
Wang, J.6
|