-
2
-
-
26044442830
-
Giant vortex and the breakdown of strong pinning in a rotating Bose–Einstein condensate
-
Aftalion A., Alama S., Bronsard L.: Giant vortex and the breakdown of strong pinning in a rotating Bose–Einstein condensate. Arch. Ration. Mech. Anal. 178, 247–286 (2005)
-
(2005)
Arch. Ration. Mech. Anal.
, vol.178
, pp. 247-286
-
-
Aftalion, A.1
Alama, S.2
Bronsard, L.3
-
3
-
-
79551481681
-
Non-existence of vortices in the small density region of a condensate
-
Aftalion A., Jerrard R.L., Royo-Letelier J.: Non-existence of vortices in the small density region of a condensate. J. Funct. Anal. 260, 2387–2406 (2011)
-
(2011)
J. Funct. Anal.
, vol.260
, pp. 2387-2406
-
-
Aftalion, A.1
Jerrard, R.L.2
Royo-Letelier, J.3
-
4
-
-
80052765060
-
Classification of the ground states and topological defects in a rotating two-component Bose–Einstein condensate
-
Aftalion A., Mason P.: Classification of the ground states and topological defects in a rotating two-component Bose–Einstein condensate. Phys. Rev. A 84, 033611 (2011)
-
(2011)
Phys. Rev. A
, vol.84
, pp. 033611
-
-
Aftalion, A.1
Mason, P.2
-
5
-
-
84858409030
-
Vortex-peak interaction and lattice shape in rotating two-component Bose–Einstein condensates
-
Aftalion A., Mason P., Wei J.: Vortex-peak interaction and lattice shape in rotating two-component Bose–Einstein condensates. Phys. Rev. A 85, 033614 (2012)
-
(2012)
Phys. Rev. A
, vol.85
, pp. 033614
-
-
Aftalion, A.1
Mason, P.2
Wei, J.3
-
6
-
-
85067728401
-
Royo-Letelier, J.: A minimal interface problem arising from a two component Bose–Einstein condensate via Gamma-convergence
-
Aftalion, A., Royo-Letelier, J.: A minimal interface problem arising from a two component Bose–Einstein condensate via Gamma-convergence. (to appear in Calc.Var. preprint) (2013). arXiv:1304.6650
-
To appear in Calc.Var. preprint) (2013). arXiv
, pp. 6650
-
-
Aftalion, A.1
-
8
-
-
84887848886
-
On compound vortices in a two-component Ginzburg–Landau functional
-
Alama S., Bronsard L., Mironescu P.: On compound vortices in a two-component Ginzburg–Landau functional. Indiana Univ. Math. J. 61, 1861–1909 (2012)
-
(2012)
Indiana Univ. Math. J.
, vol.61
, pp. 1861-1909
-
-
Alama, S.1
Bronsard, L.2
Mironescu, P.3
-
9
-
-
0000267645
-
Asymptotics for the minimization of a Ginzburg–Landau functional
-
Béthuel F., Brezis H., Hélein F.: Asymptotics for the minimization of a Ginzburg–Landau functional. Calc. Var. Part. Differ. Equ. 1, 123–148 (1993)
-
(1993)
Calc. Var. Part. Differ. Equ.
, vol.1
, pp. 123-148
-
-
Béthuel, F.1
Brezis, H.2
Hélein, F.3
-
10
-
-
0003775635
-
Ginzburg–Landau Vortices
-
Birkhäuser, Boston:
-
Béthuel, F., Brezis, H., Hélein, F.: Ginzburg–Landau Vortices, PNLDE, vol. 13. Birkhäuser, Boston (1994)
-
(1994)
PNLDE
, vol.13
-
-
Béthuel, F.1
Brezis, H.2
Hélein, F.3
-
12
-
-
84874221682
-
On phase-separation model: asymptotics and qualitative properties
-
Berestycki H., Lin T.-C., Wei J., Zhao C.: On phase-separation model: asymptotics and qualitative properties. Arch. Ration. Mech. Anal. 208, 163–200 (2013)
-
(2013)
Arch. Ration. Mech. Anal.
, vol.208
, pp. 163-200
-
-
Berestycki, H.1
Lin, T.-C.2
Wei, J.3
Zhao, C.4
-
13
-
-
84877881696
-
On entire solutions of an elliptic system modeling phase separations
-
Berestycki H., Terracini S., Wang K., Wei J.: On entire solutions of an elliptic system modeling phase separations. Adv. Math. 243, 102–126 (2013)
-
(2013)
Adv. Math.
, vol.243
, pp. 102-126
-
-
Berestycki, H.1
Terracini, S.2
Wang, K.3
Wei, J.4
-
14
-
-
0000447574
-
Semilinear equations in (Formula presented.) without conditions at infinity
-
Brezis H.: Semilinear equations in $${\mathbb{R}^n}$$Rnwithout conditions at infinity. Appl. Math. Optim. 12, 271–282 (1984)
-
(1984)
Appl. Math. Optim.
, vol.12
, pp. 271-282
-
-
Brezis, H.1
-
15
-
-
46149141759
-
Remarks on sublinear elliptic equations
-
Brezis H., Oswald L.: Remarks on sublinear elliptic equations. Nonlinear Anal. 10, 55–64 (1986)
-
(1986)
Nonlinear Anal.
, vol.10
, pp. 55-64
-
-
Brezis, H.1
Oswald, L.2
-
16
-
-
58149361424
-
Singularly perturbed elliptic systems and multi-valued harmonic functions with free boundaries
-
Caffarelli L.A., Lin F.-H.: Singularly perturbed elliptic systems and multi-valued harmonic functions with free boundaries. J. Am. Math. Soc. 21, 847–862 (2008)
-
(2008)
J. Am. Math. Soc.
, vol.21
, pp. 847-862
-
-
Caffarelli, L.A.1
Lin, F.-H.2
-
17
-
-
13844254046
-
On the superlinear Lazer–McKenna conjecture
-
Dancer E.N., Yan S.: On the superlinear Lazer–McKenna conjecture. J. Differ. Equ. 210, 317–351 (2005)
-
(2005)
J. Differ. Equ.
, vol.210
, pp. 317-351
-
-
Dancer, E.N.1
Yan, S.2
-
18
-
-
84155164478
-
The limit equation for the Gross–Pitaevskii equations and S. Terracini’s conjecture
-
Dancer E.N., Wang K., Zhang Z.: The limit equation for the Gross–Pitaevskii equations and S. Terracini’s conjecture. J. Funct. Anal. 262, 1087–1131 (2012)
-
(2012)
J. Funct. Anal.
, vol.262
, pp. 1087-1131
-
-
Dancer, E.N.1
Wang, K.2
Zhang, Z.3
-
19
-
-
34547399940
-
Painlevé Transcendents, The Riemann–Hilbert Approach
-
AMS, Providence:
-
Fokas, A.S., Its, A.R., Kapaev, A.A., Novokshenov, V.Y.: Painlevé Transcendents, The Riemann–Hilbert Approach, Mathematical Surveys and Monographs, Vol. 128. AMS, Providence (2006)
-
(2006)
Mathematical Surveys and Monographs
, vol.128
-
-
Fokas, A.S.1
Its, A.R.2
Kapaev, A.A.3
Novokshenov, V.Y.4
-
20
-
-
85067713244
-
-
Gallo, C.: The ground state of two coupled Gross-Pitaevskii equations in the Thomas–Fermi limit. (preprint) (2014)
-
Gallo, C.: The ground state of two coupled Gross-Pitaevskii equations in the Thomas–Fermi limit. (preprint) (2014). arXiv:1407.4974
-
-
-
-
21
-
-
79957872154
-
On the Thomas–Fermi ground state in a harmonic potential
-
Gallo C., Pelinovsky D.: On the Thomas–Fermi ground state in a harmonic potential. Asymptot. Anal. 73, 53–96 (2011)
-
(2011)
Asymptot. Anal.
, vol.73
, pp. 53-96
-
-
Gallo, C.1
Pelinovsky, D.2
-
22
-
-
84939873114
-
A priori bounds for positive solutions of nonlinear elliptic equations
-
Gidas B., Spruck J.: A priori bounds for positive solutions of nonlinear elliptic equations. Commun. Part. Differ. Equ. 6, 883–901 (1981)
-
(1981)
Commun. Part. Differ. Equ.
, vol.6
, pp. 883-901
-
-
Gidas, B.1
Spruck, J.2
-
23
-
-
0019147547
-
A boundary value problem associated with the second Painlevé transcendent and the Korteweg–de Vries equation
-
Hastings S.P., McLeod J.B.: A boundary value problem associated with the second Painlevé transcendent and the Korteweg–de Vries equation. Arch. Ration. Mech. Anal. 73, 31–51 (1981)
-
(1981)
Arch. Ration. Mech. Anal.
, vol.73
, pp. 31-51
-
-
Hastings, S.P.1
McLeod, J.B.2
-
24
-
-
32544460861
-
The critical velocity for vortex existence in a two-dimensional rotating Bose–Einstein condensate
-
Ignat R., Millot V.: The critical velocity for vortex existence in a two-dimensional rotating Bose–Einstein condensate. J. Funct. Anal. 233, 260–306 (2006)
-
(2006)
J. Funct. Anal.
, vol.233
, pp. 260-306
-
-
Ignat, R.1
Millot, V.2
-
25
-
-
33947128571
-
Local minimizers with vortex filaments for a Gross-Pitaevsky functional
-
Jerrard R.L.: Local minimizers with vortex filaments for a Gross-Pitaevsky functional. ESAIM Control Optim. Calc. Var. 13, 35–71 (2007)
-
(2007)
ESAIM Control Optim. Calc. Var.
, vol.13
, pp. 35-71
-
-
Jerrard, R.L.1
-
26
-
-
84858708024
-
Radial and bifurcating non-radial solutions for a singular perturbation problem in the case of exchange of stabilities
-
Karali G.D., Sourdis C.: Radial and bifurcating non-radial solutions for a singular perturbation problem in the case of exchange of stabilities. Ann. I. H. Poincaré-AN 29, 131–170 (2012)
-
(2012)
Ann. I. H. Poincaré-AN
, vol.29
, pp. 131-170
-
-
Karali, G.D.1
Sourdis, C.2
-
27
-
-
85067730693
-
The ground state of a Gross-Pitaevskii energy with general potential in the Thomas–Fermi limit
-
Karali, G.D., Sourdis, C.: The ground state of a Gross-Pitaevskii energy with general potential in the Thomas–Fermi limit (to appear in Arch. Ration. Mech. Anal) (2014). arXiv:1205.5997
-
To appear in Arch. Ration. Mech. Anal)
, pp. 5997
-
-
Karali, G.D.1
Sourdis, C.2
-
28
-
-
0033478708
-
Ginzburg–Landau type energy with discontinuous constraint
-
Lassoued L., Mironescu P.: Ginzburg–Landau type energy with discontinuous constraint. J. Anal. Math. 77, 1–26 (1999)
-
(1999)
J. Anal. Math.
, vol.77
, pp. 1-26
-
-
Lassoued, L.1
Mironescu, P.2
-
29
-
-
3242710531
-
Solutions with boundary layer and positive peak for an elliptic Dirichlet problem
-
Li G., Yang J., Yan S.: Solutions with boundary layer and positive peak for an elliptic Dirichlet problem. Proc. R. Soc. Edinb. 134, 515–536 (2004)
-
(2004)
Proc. R. Soc. Edinb.
, vol.134
, pp. 515-536
-
-
Li, G.1
Yang, J.2
Yan, S.3
-
30
-
-
77951146882
-
Uniform Hölder bounds for nonlinear Schrödinger systems with strong competition
-
Noris B., Tavares H., Terracini S., Verzini G.: Uniform Hölder bounds for nonlinear Schrödinger systems with strong competition. Commun. Pure Appl. Math. 3 63, 267–302 (2010)
-
(2010)
Commun. Pure Appl. Math. 3
, vol.63
, pp. 267-302
-
-
Noris, B.1
Tavares, H.2
Terracini, S.3
Verzini, G.4
-
31
-
-
0040955540
-
Linear and Nonlinear Aspects of Vortices. The Ginzburg–Landau Model
-
Birkhaüser, Boston:
-
Pacard, F., Rivière, T.: Linear and Nonlinear Aspects of Vortices. The Ginzburg–Landau Model, PNLDE, vol. 39. Birkhaüser, Boston (2000)
-
(2000)
PNLDE
, vol.39
-
-
Pacard, F.1
Rivière, T.2
-
32
-
-
0000540347
-
Existence of solitary waves in higher dimensions
-
Strauss W.A.: Existence of solitary waves in higher dimensions. Commun. Math. Phys. 55, 149–162 (1977)
-
(1977)
Commun. Math. Phys.
, vol.55
, pp. 149-162
-
-
Strauss, W.A.1
|