메뉴 건너뛰기




Volumn , Issue , 2015, Pages 1169-1176

How to collect segmentations for biomedical images? A benchmark evaluating the performance of experts, crowdsourced non-experts, and algorithms

Author keywords

[No Author keywords available]

Indexed keywords

BENCHMARKING; CROWDSOURCING; IMAGE ANALYSIS; MAGNETIC RESONANCE; MAGNETIC RESONANCE IMAGING; NATURAL LANGUAGE PROCESSING SYSTEMS;

EID: 84925424641     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/WACV.2015.160     Document Type: Conference Paper
Times cited : (70)

References (20)
  • 1
    • 79960844955 scopus 로고    scopus 로고
    • Highaccuracy neurite reconstruction for high-throughput neuroanatomy
    • M. Helmstaedter, K. L. Briggman, and W. Denk. Highaccuracy neurite reconstruction for high-throughput neuroanatomy. Nature Neuroscience, 14(8):1081-1088, 2011.
    • (2011) Nature Neuroscience , vol.14 , Issue.8 , pp. 1081-1088
    • Helmstaedter, M.1    Briggman, K.L.2    Denk, W.3
  • 2
    • 84861124351 scopus 로고    scopus 로고
    • Quantitative monitoring of mouse lung tumors by magnetic resonance imaging
    • A. S. Krupnick et al. Quantitative monitoring of mouse lung tumors by magnetic resonance imaging. Nature Methods, 7(1):128-142, 2012.
    • (2012) Nature Methods , vol.7 , Issue.1 , pp. 128-142
    • Krupnick, A.S.1
  • 3
    • 0345308734 scopus 로고    scopus 로고
    • U.S. National Institutes of Health, Bethesda, Maryland, USA
    • W. Rasband. ImageJ, 1997-2012. U.S. National Institutes of Health, Bethesda, Maryland, USA.
    • ImageJ, 1997-2012
    • Rasband, W.1
  • 4
    • 84925409217 scopus 로고    scopus 로고
    • Amira, software platform for visualizing, manipulating, and understanding life science and bio-medical data. Retrieved August 17, 2012
    • Amira, software platform for visualizing, manipulating, and understanding life science and bio-medical data. Retrieved August 17, 2012, from http://amira.com.
  • 5
    • 84875609338 scopus 로고    scopus 로고
    • SAGE: An approach and implementation empowering quick and reliable quantitative analysis of segmentation quality
    • D. Gurari et al. SAGE: An Approach and Implementation Empowering Quick and Reliable Quantitative Analysis of Segmentation Quality. IEEE Workshop on Applications In Computer Vision (WACV), 475-481, 2013.
    • (2013) IEEE Workshop on Applications in Computer Vision (WACV) , pp. 475-481
    • Gurari, D.1
  • 6
    • 78651094698 scopus 로고    scopus 로고
    • Creaseg: A free software for the evaluation of image segmentation algorithms based on level-set
    • T. Dietenbeck et al. Creaseg: A free software for the evaluation of image segmentation algorithms based on level-set. IEEE Image Proc (ICIP), pages 665-668, 2010.
    • (2010) IEEE Image Proc (ICIP) , pp. 665-668
    • Dietenbeck, T.1
  • 7
    • 84925409130 scopus 로고    scopus 로고
    • MATLAB. The Mathworks, Inc., Natick, MA
    • MATLAB. The Mathworks, Inc., Natick, MA.
  • 8
    • 0018306059 scopus 로고
    • A threshold selection method from gray-level histograms
    • N. Otsu. A threshold selection method from gray-level histograms. IEEE Trans. Syst. Man, Cybern. B, Cybern., 9(1):62-66, 1979.
    • (1979) IEEE Trans. Syst. Man, Cybern. B, Cybern. , vol.9 , Issue.1 , pp. 62-66
    • Otsu, N.1
  • 9
    • 0019397313 scopus 로고
    • Generalizing the Hough transform to detect arbitrary shapes
    • D. Ballard. Generalizing the Hough transform to detect arbitrary shapes. Pattern Recognition, 13(2):111-122, 1981.
    • (1981) Pattern Recognition , vol.13 , Issue.2 , pp. 111-122
    • Ballard, D.1
  • 10
    • 0026172104 scopus 로고
    • Watersheds in digital spaces: An efficient algorithm based on immersion simulations
    • L. Vincent and P. Soille. Watersheds in Digital Spaces: An Efficient Algorithm Based on Immersion Simulations IEEE Transactions on Pattern Analysis and Machine Learning, 13(6):583-598, 1991.
    • (1991) IEEE Transactions on Pattern Analysis and Machine Learning , vol.13 , Issue.6 , pp. 583-598
    • Vincent, L.1    Soille, P.2
  • 12
    • 42649136920 scopus 로고    scopus 로고
    • A real-time algorithm for the approximation of level-set based curve evolution
    • Y. Shi and W. C. Karl. A real-time algorithm for the approximation of level-set based curve. evolution. IEEE Transactions on Image Processing, 17(5):645-656, 2008.
    • (2008) IEEE Transactions on Image Processing , vol.17 , Issue.5 , pp. 645-656
    • Shi, Y.1    Karl, W.C.2
  • 15
  • 16
    • 84986248653 scopus 로고    scopus 로고
    • How to use level set methods to accurately find boundaries of cells in biomedical images? Evaluation of six methods paired with automated and crowdsourced initial contours
    • D. Gurari et al. How to Use Level Set Methods to Accurately Find Boundaries of Cells in Biomedical Images? Evaluation of Six Methods Paired with Automated and Crowdsourced Initial Contours. The Interactive Medical Image Computation Workshop (MICCAI IMIC), 9 pp, 2014.
    • The Interactive Medical Image Computation Workshop (MICCAI IMIC) , vol.9 , pp. 2014
    • Gurari, D.1
  • 17
    • 84880973546 scopus 로고    scopus 로고
    • Crowdsourcing for bioinformatics
    • B. M. Good and A. I. Su. Crowdsourcing for Bioinformatics. Bioinformatics, 29:1925-1933, 2013.
    • (2013) Bioinformatics , vol.29 , pp. 1925-1933
    • Good, B.M.1    Su, A.I.2
  • 19
    • 39749186006 scopus 로고    scopus 로고
    • LabelMe: A database and web-based tool for image annotation
    • B. C. Russell et al. LabelMe: a database and web-based tool for image annotation. International Journal of Computer Vision, 77(1-3):157-173, 2005.
    • (2005) International Journal of Computer Vision , vol.77 , Issue.1-3 , pp. 157-173
    • Russell, B.C.1
  • 20
    • 85032750965 scopus 로고    scopus 로고
    • Cell segmentation: 50 years down the road
    • E. Meijering. Cell segmentation: 50 years down the road. IEEE Signal Processing Magazine, 29(5):140-145, 2012.
    • (2012) IEEE Signal Processing Magazine , vol.29 , Issue.5 , pp. 140-145
    • Meijering, E.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.