메뉴 건너뛰기




Volumn 113, Issue , 2015, Pages 195-210

Nonlinear squeezing time-frequency transform for weak signal detection

Author keywords

Instantaneous frequency; Nonlinear squeezing time frequency transform; Synchrosqueezing transform; Time frequency analysis; Weak signal detection

Indexed keywords

ALGORITHMS; FREQUENCY ESTIMATION; MATHEMATICAL TRANSFORMATIONS; NONLINEAR ANALYSIS;

EID: 84925325851     PISSN: 01651684     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.sigpro.2015.01.022     Document Type: Article
Times cited : (87)

References (43)
  • 1
    • 0033097610 scopus 로고    scopus 로고
    • Joint time-frequency analysis
    • S. Qian, and D. Chen Joint time-frequency analysis Signal Process. Mag. IEEE 16 2 1999 52 67
    • (1999) Signal Process. Mag. IEEE , vol.16 , Issue.2 , pp. 52-67
    • Qian, S.1    Chen, D.2
  • 2
    • 84863115286 scopus 로고    scopus 로고
    • Time-frequency analysis of seismic data using local attributes
    • G. Liu, S. Fomel, and X. Chen Time-frequency analysis of seismic data using local attributes Geophysics 76 6 2011 P23 P34
    • (2011) Geophysics , vol.76 , Issue.6 , pp. P23-P34
    • Liu, G.1    Fomel, S.2    Chen, X.3
  • 3
    • 79952005135 scopus 로고    scopus 로고
    • Multiwindow S-method for instantaneous frequency estimation and its application in radar signal analysis
    • I. Orovic, S. Stankovic, T. Thayaparan, and L. Stankovic Multiwindow S-method for instantaneous frequency estimation and its application in radar signal analysis IET Signal Process. 4 4 2010 363 370
    • (2010) IET Signal Process , vol.4 , Issue.4 , pp. 363-370
    • Orovic, I.1    Stankovic, S.2    Thayaparan, T.3    Stankovic, L.4
  • 6
    • 41849100016 scopus 로고    scopus 로고
    • Local polynomial Fourier transform receiver for nonstationary interference excision in DSSS communications
    • S. Djukanovic, M. Dakovic, and L. Stankovic Local polynomial Fourier transform receiver for nonstationary interference excision in DSSS communications IEEE Trans. Signal Process. 56 4 2008 1627 1636
    • (2008) IEEE Trans. Signal Process. , vol.56 , Issue.4 , pp. 1627-1636
    • Djukanovic, S.1    Dakovic, M.2    Stankovic, L.3
  • 9
    • 73849103893 scopus 로고    scopus 로고
    • Time-frequency analysis of power-quality disturbances via the Gabor-Wigner transform
    • C. Soo-Hwan, G. Jang, and S.-H. Kwon Time-frequency analysis of power-quality disturbances via the Gabor-Wigner transform IEEE Trans. Power Deliv. 25 1 2010 494 499
    • (2010) IEEE Trans. Power Deliv. , vol.25 , Issue.1 , pp. 494-499
    • Soo-Hwan, C.1    Jang, G.2    Kwon, S.-H.3
  • 10
    • 0034289948 scopus 로고    scopus 로고
    • Time-frequency and time-scale domain analysis of voltage disturbances
    • Y.H. Gu, and M.H. Bollen Time-frequency and time-scale domain analysis of voltage disturbances IEEE Trans. Power Deliv. 15 4 2000 1279 1284
    • (2000) IEEE Trans. Power Deliv. , vol.15 , Issue.4 , pp. 1279-1284
    • Gu, Y.H.1    Bollen, M.H.2
  • 11
    • 84876940227 scopus 로고    scopus 로고
    • Recent advances in time-frequency analysis methods for machinery fault diagnosis: A review with application examples
    • Z. Feng, M. Liang, and F. Chu Recent advances in time-frequency analysis methods for machinery fault diagnosis: a review with application examples Mech. Syst. Signal Process. 38 1 2013 165 205
    • (2013) Mech. Syst. Signal Process , vol.38 , Issue.1 , pp. 165-205
    • Feng, Z.1    Liang, M.2    Chu, F.3
  • 12
    • 84885572174 scopus 로고    scopus 로고
    • Sparsity-enabled signal decomposition using tunable Q-factor wavelet transform for fault feature extraction of gearbox
    • G. Cai, X. Chen, and Z. He Sparsity-enabled signal decomposition using tunable Q-factor wavelet transform for fault feature extraction of gearbox Mech. Syst. Signal Process. 41 1-2 2013 34 53
    • (2013) Mech. Syst. Signal Process. , vol.41 , Issue.12 , pp. 34-53
    • Cai, G.1    Chen, X.2    He, Z.3
  • 13
    • 84870468265 scopus 로고    scopus 로고
    • Time-frequency manifold for nonlinear feature extraction in machinery fault diagnosis
    • Q. He Time-frequency manifold for nonlinear feature extraction in machinery fault diagnosis Mech. Syst. Signal Process. 35 1-2 2013 200 218
    • (2013) Mech. Syst. Signal Process. , vol.35 , Issue.12 , pp. 200-218
    • He, Q.1
  • 14
    • 84865646191 scopus 로고    scopus 로고
    • Fault feature extraction of gearbox by using overcomplete rational dilation discrete wavelet transform on signals measured from vibration sensors
    • B. Chen, Z. Zhang, C. Sun, B. Li, Y. Zi, and Z. He Fault feature extraction of gearbox by using overcomplete rational dilation discrete wavelet transform on signals measured from vibration sensors Mech. Syst. Signal Process. 33 2012 275 298
    • (2012) Mech. Syst. Signal Process. , vol.33 , pp. 275-298
    • Chen, B.1    Zhang, Z.2    Sun, C.3    Li, B.4    Zi, Y.5    He, Z.6
  • 15
    • 79952143103 scopus 로고    scopus 로고
    • Adaptive parameter identification based on morlet wavelet and application in gearbox fault feature detection
    • (10 pp)
    • S. Wang, Z. Zhu, Y. He, and W. Huang Adaptive parameter identification based on Morlet wavelet and application in gearbox fault feature detection EURASIP J. Adv. Signal Process. 2010 842879 (10 pp)
    • (2010) EURASIP J. Adv. Signal Process , pp. 842879
    • Wang, S.1    Zhu, Z.2    He, Y.3    Huang, W.4
  • 16
    • 56749180547 scopus 로고    scopus 로고
    • Time-frequency feature representation using energy concentration: An overview of recent advances
    • E. Sejdić, I. Djurović, and J. Jiang Time-frequency feature representation using energy concentration: an overview of recent advances Digit. Signal Process. 19 1 2009 153 183
    • (2009) Digit. Signal Process , vol.19 , Issue.1 , pp. 153-183
    • Sejdić, E.1    Djurović, I.2    Jiang, J.3
  • 17
    • 80054985857 scopus 로고    scopus 로고
    • Characterize highly oscillating frequency modulation using generalized Warblet transform
    • Y. Yang, Z. Peng, G. Meng, and W. Zhang Characterize highly oscillating frequency modulation using generalized Warblet transform Mech. Syst. Signal Process. 26 2012 128 140
    • (2012) Mech. Syst. Signal Process. , vol.26 , pp. 128-140
    • Yang, Y.1    Peng, Z.2    Meng, G.3    Zhang, W.4
  • 18
    • 80051819477 scopus 로고    scopus 로고
    • Polynomial chirplet transform with application to instantaneous frequency estimation
    • Z. Peng, G. Meng, F. Chu, Z. Lang, W. Zhang, and Y. Yang Polynomial chirplet transform with application to instantaneous frequency estimation IEEE Trans. Instrum. Meas. 60 9 2011 3222 3229
    • (2011) IEEE Trans. Instrum. Meas. , vol.60 , Issue.9 , pp. 3222-3229
    • Peng, Z.1    Meng, G.2    Chu, F.3    Lang, Z.4    Zhang, W.5    Yang, Y.6
  • 19
    • 84863916708 scopus 로고    scopus 로고
    • STFT with adaptive window width based on the chirp rate
    • S.C. Pei, and S.G. Huang STFT with adaptive window width based on the chirp rate IEEE Trans. Signal Process. 60 8 2012 4065 4080
    • (2012) IEEE Trans. Signal Process , vol.60 , Issue.8 , pp. 4065-4080
    • Pei, S.C.1    Huang, S.G.2
  • 20
    • 0034298510 scopus 로고    scopus 로고
    • Improved instantaneous frequency estimation using an adaptive short-time Fourier transform
    • H.K. Kwok, and D.L. Jones Improved instantaneous frequency estimation using an adaptive short-time Fourier transform IEEE Trans. Signal Process. 48 10 2000 2964 2972
    • (2000) IEEE Trans. Signal Process , vol.48 , Issue.10 , pp. 2964-2972
    • Kwok, H.K.1    Jones, D.L.2
  • 21
    • 79952006984 scopus 로고    scopus 로고
    • Local polynomial Fourier transform: A review on recent developments and applications
    • X. Li, G. Bi, S. Stankovic, and A.M. Zoubir Local polynomial Fourier transform: a review on recent developments and applications Signal Process. 91 6 2011 1370 1393
    • (2011) Signal Process , vol.91 , Issue.6 , pp. 1370-1393
    • Li, X.1    Bi, G.2    Stankovic, S.3    Zoubir, A.M.4
  • 23
    • 84872137849 scopus 로고    scopus 로고
    • Instantaneous frequency estimation of multi-component non-stationary signals using multi-view time-frequency distributions based on the adaptive fractional spectrogram
    • N.A. Khan, and B. Boashash Instantaneous frequency estimation of multi-component non-stationary signals using multi-view time-frequency distributions based on the adaptive fractional spectrogram IEEE Signal Process. Lett. 20 2 2013 157 160
    • (2013) IEEE Signal Process. Lett. , vol.20 , Issue.2 , pp. 157-160
    • Khan, N.A.1    Boashash, B.2
  • 24
    • 84890506301 scopus 로고    scopus 로고
    • Matching demodulation transform and synchrosqueezing in time-frequency analysis
    • S. Wang, X. Chen, G. Cai, B. Chen, X. Li, and Z. He Matching demodulation transform and synchrosqueezing in time-frequency analysis IEEE Trans. Signal Process. 62 1 2014 69 84
    • (2014) IEEE Trans. Signal Process. , vol.62 , Issue.1 , pp. 69-84
    • Wang, S.1    Chen, X.2    Cai, G.3    Chen, B.4    Li, X.5    He, Z.6
  • 25
    • 84898784714 scopus 로고    scopus 로고
    • Matching demodulation transform with application to feature extraction of rotor rub-impact fault
    • S. Wang, X. Chen, G. Li, X. Li, and Z. He Matching demodulation transform with application to feature extraction of rotor rub-impact fault IEEE Trans. Instrum. Meas. 63 5 2014 1372 1383
    • (2014) IEEE Trans. Instrum. Meas. , vol.63 , Issue.5 , pp. 1372-1383
    • Wang, S.1    Chen, X.2    Li, G.3    Li, X.4    He, Z.5
  • 26
    • 0029306339 scopus 로고
    • Improving the readability of time-frequency and time-scale representations by the reassignment method
    • F. Auger, and P. Flandrin Improving the readability of time-frequency and time-scale representations by the reassignment method IEEE Trans. Signal Process. 43 5 1995 1068 1089
    • (1995) IEEE Trans. Signal Process. , vol.43 , Issue.5 , pp. 1068-1089
    • Auger, F.1    Flandrin, P.2
  • 27
    • 34249819961 scopus 로고    scopus 로고
    • Multitaper time-frequency reassignment for nonstationary spectrum estimation and chirp enhancement
    • J. Xiao, and P. Flandrin Multitaper time-frequency reassignment for nonstationary spectrum estimation and chirp enhancement IEEE Trans. Signal Process. 55 6 2007 2851 2860
    • (2007) IEEE Trans. Signal Process. , vol.55 , Issue.6 , pp. 2851-2860
    • Xiao, J.1    Flandrin, P.2
  • 28
    • 68249136814 scopus 로고    scopus 로고
    • Recursive time-frequency reassignment
    • G.K. Nilsen Recursive time-frequency reassignment IEEE Trans. Signal Process 57 8 2009 3283 3287
    • (2009) IEEE Trans. Signal Process , vol.57 , Issue.8 , pp. 3283-3287
    • Nilsen, G.K.1
  • 30
    • 78751584911 scopus 로고    scopus 로고
    • Synchrosqueezed wavelet transforms: An empirical mode decomposition-like tool
    • I. Daubechies, J. Lu, and H.T. Wu Synchrosqueezed wavelet transforms: an empirical mode decomposition-like tool Appl. Comput. Harmon. Anal. 30 2 2011 243 261
    • (2011) Appl. Comput. Harmon. Anal. , vol.30 , Issue.2 , pp. 243-261
    • Daubechies, I.1    Lu, J.2    Wu, H.T.3
  • 31
    • 80054983989 scopus 로고    scopus 로고
    • Synchrosqueezing-based recovery of instantaneous frequency from nonuniform samples
    • G. Thakur, and H.-T. Wu Synchrosqueezing-based recovery of instantaneous frequency from nonuniform samples SIAM J. Math. Anal. 43 5 2011 2078 2095
    • (2011) SIAM J. Math. Anal. , vol.43 , Issue.5 , pp. 2078-2095
    • Thakur, G.1    Wu, H.-T.2
  • 32
    • 84867513574 scopus 로고    scopus 로고
    • A new algorithm for multicomponent signals analysis based on synchroSqueezing: With an application to signal sampling and denoising
    • S. Meignen, T. Oberlin, and S. McLaughlin A new algorithm for multicomponent signals analysis based on synchroSqueezing: with an application to signal sampling and denoising IEEE Trans. Signal Process. 60 11 2012 5787 5798
    • (2012) IEEE Trans. Signal Process , vol.60 , Issue.11 , pp. 5787-5798
    • Meignen, S.1    Oberlin, T.2    McLaughlin, S.3
  • 33
    • 84862801789 scopus 로고    scopus 로고
    • A generalized synchrosqueezing transform for enhancing signal time-frequency representation
    • C. Li, and M. Liang A generalized synchrosqueezing transform for enhancing signal time-frequency representation Signal Process. 92 9 2012 2264 2274
    • (2012) Signal Process. , vol.92 , Issue.9 , pp. 2264-2274
    • Li, C.1    Liang, M.2
  • 34
    • 84871772255 scopus 로고    scopus 로고
    • The synchrosqueezing algorithm for time-varying spectral analysis: Robustness properties and new paleoclimate applications
    • G. Thakur, E. Brevdo, N.S. Fučkar, and H.-T. Wu The synchrosqueezing algorithm for time-varying spectral analysis: robustness properties and new paleoclimate applications Signal Process. 93 5 2013 1079 1094
    • (2013) Signal Process. , vol.93 , Issue.5 , pp. 1079-1094
    • Thakur, G.1    Brevdo, E.2    Fučkar, N.S.3    Wu, H.-T.4
  • 35
    • 34249885836 scopus 로고    scopus 로고
    • Estimating the instantaneous frequency of sinusoidal components using phase-based methods
    • M. Lagrange, and S. Marchand Estimating the instantaneous frequency of sinusoidal components using phase-based methods J. Audio Eng. Soc. 55 5 2007 385 399
    • (2007) J. Audio Eng. Soc. , vol.55 , Issue.5 , pp. 385-399
    • Lagrange, M.1    Marchand, S.2
  • 36
    • 0346118751 scopus 로고    scopus 로고
    • Instantaneous higher order phase derivatives
    • D.J. Nelson Instantaneous higher order phase derivatives Digit. Signal Process. 12 2 2002 416 428
    • (2002) Digit. Signal Process , vol.12 , Issue.2 , pp. 416-428
    • Nelson, D.J.1
  • 38
    • 84859547992 scopus 로고    scopus 로고
    • A formal study of the nonlinearity and consistency of the empirical mode decomposition
    • N. Tsakalozos, K. Drakakis, and S. Rickard A formal study of the nonlinearity and consistency of the empirical mode decomposition Signal Process. 92 9 2012 1961 1969
    • (2012) Signal Process , vol.92 , Issue.9 , pp. 1961-1969
    • Tsakalozos, N.1    Drakakis, K.2    Rickard, S.3
  • 40
    • 1142267431 scopus 로고    scopus 로고
    • Moire interferogram phase extraction: A ridge detection algorithm for continuous wavelet transforms
    • H. Liu, A.N. Cartwright, and C. Basaran Moire interferogram phase extraction: a ridge detection algorithm for continuous wavelet transforms Appl. Opt. 43 4 2004 850 857
    • (2004) Appl. Opt. , vol.43 , Issue.4 , pp. 850-857
    • Liu, H.1    Cartwright, A.N.2    Basaran, C.3
  • 41
    • 34547814656 scopus 로고    scopus 로고
    • Ridge extraction algorithms for one-dimensional continuous wavelet transform: A comparison
    • A. Abid, M. Gdeisat, D. Burton, M. Lalor, Ridge extraction algorithms for one-dimensional continuous wavelet transform: a comparison, J. Phys.: Conf. Ser. (2007) 012045.
    • (2007) J. Phys.: Conf. Ser. , pp. 012045
    • Abid, A.1    Gdeisat, M.2    Burton, D.3    Lalor, M.4
  • 42
    • 84880149996 scopus 로고    scopus 로고
    • Wayside acoustic diagnosis of defective train bearings based on signal resampling and information enhancement
    • Q. He, J. Wang, F. Hu, and F. Kong Wayside acoustic diagnosis of defective train bearings based on signal resampling and information enhancement J. Sound Vib. 332 21 2013 5635 5649
    • (2013) J. Sound Vib. , vol.332 , Issue.21 , pp. 5635-5649
    • He, Q.1    Wang, J.2    Hu, F.3    Kong, F.4
  • 43
    • 84925324417 scopus 로고    scopus 로고
    • Bat echolocation chirp [Online]. Available.
    • R. Baraniuk. Bat echolocation chirp [Online]. Available:
    • Baraniuk, R.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.