-
1
-
-
79952397059
-
Everyone’s an influencer: Quantifying influence on twitter
-
Bakshy, E., Hofman, J.M., Mason, W.A., Watts, D.J.: Everyone’s an influencer: quantifying influence on twitter. In: WSDM (2011)
-
(2011)
WSDM
-
-
Bakshy, E.1
Hofman, J.M.2
Mason, W.A.3
Watts, D.J.4
-
2
-
-
84860866639
-
The role of social networks in information diffusion
-
Bakshy, E., Rosenn, I., Marlow, C., Adamic, L.: The role of social networks in information diffusion. In: WWW (2012)
-
(2012)
-
-
Bakshy, E.1
Rosenn, I.2
Marlow, C.3
Adamic, L.4
-
3
-
-
8344232157
-
Position bias in multiple-choice questions
-
Blunch, N.J.: Position bias in multiple-choice questions. Journal of Marketing Research 21(2), 216–220 (1984)
-
(1984)
Journal of Marketing Research
, vol.21
, Issue.2
, pp. 216-220
-
-
Blunch, N.J.1
-
4
-
-
84925315432
-
What do you see when you’re surfing?: Using eye tracking to predict salient regions of web pages
-
Buscher, G., Cutrell, E., Morris, M.R.: What do you see when you’re surfing?: using eye tracking to predict salient regions of web pages. In: SIGCHI (2009)
-
(2009)
SIGCHI
-
-
Buscher, G.1
Cutrell, E.2
Morris, M.R.3
-
5
-
-
84867912823
-
Trends in twitter use by physicians at the american society of clinical oncology annual meeting, 2010 and 2011
-
Chaudhry, A., Glodé, L.M., Gillman, M., Miller, R.S.: Trends in twitter use by physicians at the american society of clinical oncology annual meeting, 2010 and 2011. Journal of Oncology Practice 8(3), 173–178 (2012)
-
(2012)
Journal of Oncology Practice
, vol.8
, Issue.3
, pp. 173-178
-
-
Chaudhry, A.1
Glodé, L.M.2
Gillman, M.3
Miller, R.S.4
-
6
-
-
84923357988
-
Can cascades be predicted?
-
Cheng, J., Adamic, L., Dow, P.A., Kleinberg, J.M., Leskovec, J.: Can cascades be predicted? In: WWW (2014)
-
(2014)
-
-
Cheng, J.1
Adamic, L.2
Dow, P.A.3
Kleinberg, J.M.4
Leskovec, J.5
-
7
-
-
84993968702
-
Taking it all in? Visual attention in microblog consumption
-
Counts, S., Fisher, K.: Taking it all in? visual attention in microblog consumption. In: ICWSM (2011)
-
(2011)
ICWSM
-
-
Counts, S.1
Fisher, K.2
-
8
-
-
42549140738
-
An experimental comparison of click position-bias models
-
Craswell, N., Zoeter, O., Taylor, M., Ramsey, B.: An experimental comparison of click position-bias models. In: WSDM (2008)
-
(2008)
WSDM
-
-
Craswell, N.1
Zoeter, O.2
Taylor, M.3
Ramsey, B.4
-
9
-
-
84863518435
-
The structure of online diffusion networks
-
Goel, S., Watts, D.J., Goldstein, D.G.: The structure of online diffusion networks. In: EC (2012)
-
(2012)
EC
-
-
Goel, S.1
Watts, D.J.2
Goldstein, D.G.3
-
10
-
-
84873679467
-
How limited visibility and divided attention constrain social contagion
-
Hodas, N., Lerman, K.: How limited visibility and divided attention constrain social contagion. In: SocialCom (2012)
-
(2012)
Socialcom
-
-
Hodas, N.1
Lerman, K.2
-
11
-
-
84888257493
-
Social dynamics of digg
-
June
-
Hogg, T., Lerman, K.: Social dynamics of digg. EPJ Data Science 1(5) (June 2012)
-
(2012)
EPJ Data Science
, vol.1
, Issue.5
-
-
Hogg, T.1
Lerman, K.2
-
12
-
-
84925298721
-
Stochastic models predict user behavior in social media
-
Hogg, T., Lerman, K., Smith, L.M.: Stochastic models predict user behavior in social media. In: SocialCom (2013)
-
(2013)
Socialcom
-
-
Hogg, T.1
Lerman, K.2
Smith, L.M.3
-
13
-
-
0032478716
-
Strong Regularities in World Wide Web Surfing
-
Huberman, B.A.: Strong Regularities in World Wide Web Surfing. Science 280(5360), 95–97 (1998)
-
(1998)
Science
, vol.280
, Issue.5360
, pp. 95-97
-
-
Huberman, B.A.1
-
14
-
-
84893363290
-
LA-CTR: A limited attention collaborative topic regression for social media
-
Kang, J.-H., Lerman, K.: LA-CTR: A limited attention collaborative topic regression for social media. In: AAAI (2013)
-
(2013)
AAAI
-
-
Kang, J.-H.1
Lerman, K.2
-
15
-
-
84889580221
-
LA-LDA: A limited attention model for social recommendation
-
Kang, J.-H., Lerman, K., Getoor, L.: LA-LDA: A limited attention model for social recommendation. In: SBP (2013)
-
(2013)
SBP
-
-
Kang, J.-H.1
Lerman, K.2
Getoor, L.3
-
16
-
-
84903390297
-
Leveraging position bias to improve peer recommendation
-
Lerman, K., Hogg, T.: Leveraging position bias to improve peer recommendation. PLoS One 9(6), e98914 (2014)
-
(2014)
Plos One
, vol.9
, Issue.6
-
-
Lerman, K.1
Hogg, T.2
-
17
-
-
70349257904
-
Sorec: Social recommendation using probabilistic matrix factorization
-
ACM
-
Ma, H., Yang, H., Lyu, M., King, I.: Sorec: social recommendation using probabilistic matrix factorization. In: CIKM, pp. 931–940. ACM (2008)
-
(2008)
CIKM
, pp. 931-940
-
-
Ma, H.1
Yang, H.2
Lyu, M.3
King, I.4
-
19
-
-
84909948109
-
Quantifying information overload in social media and its impact on social contagions
-
Rodriguez, M.G., Gummadi, K., Schoelkopf, B.: Quantifying information overload in social media and its impact on social contagions. In: ICWSM (2014)
-
(2014)
ICWSM
-
-
Rodriguez, M.G.1
Gummadi, K.2
Schoelkopf, B.3
-
20
-
-
79955130574
-
Influence and passivity in social media
-
Romero, D.M., Galuba, W., Asur, S., Huberman, B.A.: Influence and passivity in social media. In: WWW (2011)
-
(2011)
-
-
Romero, D.M.1
Galuba, W.2
Asur, S.3
Huberman, B.A.4
-
21
-
-
84873450362
-
Differences in the mechanics of information diffusion across topics: Idioms, political hashtags, and complex contagion on twitter
-
Romero, D.M., Meeder, B., Kleinberg, J.: Differences in the mechanics of information diffusion across topics: Idioms, political hashtags, and complex contagion on twitter. In: WWW (2011)
-
(2011)
-
-
Romero, D.M.1
Meeder, B.2
Kleinberg, J.3
-
23
-
-
80052666619
-
Collaborative topic modeling for recommending scientific articles
-
Wang, C., Blei, D.M.: Collaborative topic modeling for recommending scientific articles. In: KDD (2011)
-
(2011)
KDD
-
-
Wang, C.1
Blei, D.M.2
|