메뉴 건너뛰기




Volumn 253, Issue , 2006, Pages 27-68

Cluster χ-varieties, amalgamation, and poisson–lie groups

Author keywords

[No Author keywords available]

Indexed keywords


EID: 84924390652     PISSN: 07431643     EISSN: 2296505X     Source Type: Book Series    
DOI: 10.1007/978-0-8176-4532-8_2     Document Type: Chapter
Times cited : (124)

References (13)
  • 1
    • 16144367806 scopus 로고    scopus 로고
    • Parametrizations of canonical bases and totally positive matrices
    • A. Berenstein, S. Fomin, and A. Zelevinsky, Parametrizations of canonical bases and totally positive matrices, Adv. Math., 122-1 (1996), 49–149.
    • (1996) Adv. Math. , vol.122-1 , pp. 49-149
    • Berenstein, A.1    Fomin, S.2    Zelevinsky, A.3
  • 2
    • 12744281268 scopus 로고    scopus 로고
    • Cluster algebras III: Upper bounds and double Bruhat cells
    • A. Berenstein, S. Fomin, and A. Zelevinsky, Cluster algebras III: Upper bounds and double Bruhat cells, Duke Math. J., 126-1 (2005), 1–52.
    • (2005) Duke Math. J. , vol.126-1 , pp. 1-52
    • Berenstein, A.1    Fomin, S.2    Zelevinsky, A.3
  • 3
    • 0031459270 scopus 로고    scopus 로고
    • Totally positivity in Schubert varieties
    • A. Berenstein and A. Zelevinsky, Totally positivity in Schubert varieties, Comm. Math. Helv., 72 (1997), 1–40.
    • (1997) Comm. Math. Helv. , vol.72 , pp. 1-40
    • Berenstein, A.1    Zelevinsky, A.2
  • 4
    • 85028362149 scopus 로고    scopus 로고
    • Quantum cluster algebras
    • math.QA/0404446, to appear
    • A. Berenstein and A. Zelevinsky, Quantum cluster algebras, math.QA/0404446, 2004; Adv. Math., to appear.
    • (2004) Adv. Math
    • Berenstein, A.1    Zelevinsky, A.2
  • 5
    • 0001603842 scopus 로고
    • Hamiltonian structures on Lie groups, Lie bialgebras and the geometric meaning of classical Yang-Baxter equations
    • V. G. Drinfeld, Hamiltonian structures on Lie groups, Lie bialgebras and the geometric meaning of classical Yang-Baxter equations, Dokl. Akad. Nauk SSSR, 268-2 (1983), 285–287.
    • (1983) Dokl. Akad. Nauk SSSR , vol.268 , Issue.2 , pp. 285-287
    • Drinfeld, V.G.1
  • 7
    • 0033450286 scopus 로고    scopus 로고
    • Double Bruhat cells and total positivity
    • S. Fomin and A. Zelevinsky, Double Bruhat cells and total positivity, J. Amer. Math. Soc., 12-2 (1999), 335–380.
    • (1999) J. Amer. Math. Soc. , vol.12-2 , pp. 335-380
    • Fomin, S.1    Zelevinsky, A.2
  • 8
    • 0036004369 scopus 로고    scopus 로고
    • Cluster algebras I: Foundations
    • S. Fomin and A. Zelevinsky, Cluster algebras I: Foundations, J. Amer. Math. Soc., 15-2 (2002), 497–529.
    • (2002) J. Amer. Math. Soc. , vol.15-2 , pp. 497-529
    • Fomin, S.1    Zelevinsky, A.2
  • 12
    • 0003270999 scopus 로고
    • Total positivity in reductive groups
    • Birkhäuser Boston, Cambridge, MA
    • G. Lusztig, Total positivity in reductive groups, in Lie Theory and Geometry, Progress in Mathematics, Vol. 123, Birkhäuser Boston, Cambridge, MA, 1994, 531–568.
    • (1994) Lie Theory and Geometry, Progress in Mathematics , vol.123 , pp. 531-568
    • Lusztig, G.1
  • 13
    • 84968495738 scopus 로고
    • Canonical bases arising from quantized enveloping algebras
    • G. Lusztig, Canonical bases arising from quantized enveloping algebras, J. Amer. Math. Soc., 3-2 (1990), 447–498.
    • (1990) J. Amer. Math. Soc. , vol.3-2 , pp. 447-498
    • Lusztig, G.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.