-
1
-
-
16144367806
-
Parametrizations of canonical bases and totally positive matrices
-
A. Berenstein, S. Fomin, and A. Zelevinsky, Parametrizations of canonical bases and totally positive matrices, Adv. Math., 122-1 (1996), 49–149.
-
(1996)
Adv. Math.
, vol.122-1
, pp. 49-149
-
-
Berenstein, A.1
Fomin, S.2
Zelevinsky, A.3
-
2
-
-
12744281268
-
Cluster algebras III: Upper bounds and double Bruhat cells
-
A. Berenstein, S. Fomin, and A. Zelevinsky, Cluster algebras III: Upper bounds and double Bruhat cells, Duke Math. J., 126-1 (2005), 1–52.
-
(2005)
Duke Math. J.
, vol.126-1
, pp. 1-52
-
-
Berenstein, A.1
Fomin, S.2
Zelevinsky, A.3
-
3
-
-
0031459270
-
Totally positivity in Schubert varieties
-
A. Berenstein and A. Zelevinsky, Totally positivity in Schubert varieties, Comm. Math. Helv., 72 (1997), 1–40.
-
(1997)
Comm. Math. Helv.
, vol.72
, pp. 1-40
-
-
Berenstein, A.1
Zelevinsky, A.2
-
4
-
-
85028362149
-
Quantum cluster algebras
-
math.QA/0404446, to appear
-
A. Berenstein and A. Zelevinsky, Quantum cluster algebras, math.QA/0404446, 2004; Adv. Math., to appear.
-
(2004)
Adv. Math
-
-
Berenstein, A.1
Zelevinsky, A.2
-
5
-
-
0001603842
-
Hamiltonian structures on Lie groups, Lie bialgebras and the geometric meaning of classical Yang-Baxter equations
-
V. G. Drinfeld, Hamiltonian structures on Lie groups, Lie bialgebras and the geometric meaning of classical Yang-Baxter equations, Dokl. Akad. Nauk SSSR, 268-2 (1983), 285–287.
-
(1983)
Dokl. Akad. Nauk SSSR
, vol.268
, Issue.2
, pp. 285-287
-
-
Drinfeld, V.G.1
-
6
-
-
0000481618
-
Quantum groups
-
American Mathematical Society, Providence, RI
-
V. G. Drinfeld, Quantum groups, in Proceedings of the International Congress of Mathematicians, Vols. 1–2, American Mathematical Society, Providence, RI, 1987, 798–820.
-
(1987)
Proceedings of the International Congress of Mathematicians
, vol.1-2
, pp. 798-820
-
-
Drinfeld, V.G.1
-
7
-
-
0033450286
-
Double Bruhat cells and total positivity
-
S. Fomin and A. Zelevinsky, Double Bruhat cells and total positivity, J. Amer. Math. Soc., 12-2 (1999), 335–380.
-
(1999)
J. Amer. Math. Soc.
, vol.12-2
, pp. 335-380
-
-
Fomin, S.1
Zelevinsky, A.2
-
8
-
-
0036004369
-
Cluster algebras I: Foundations
-
S. Fomin and A. Zelevinsky, Cluster algebras I: Foundations, J. Amer. Math. Soc., 15-2 (2002), 497–529.
-
(2002)
J. Amer. Math. Soc.
, vol.15-2
, pp. 497-529
-
-
Fomin, S.1
Zelevinsky, A.2
-
11
-
-
12744256965
-
Cluster algebras and Poisson geometry
-
M. Gekhtman, M. Shapiro, A. Vainshtein, Cluster algebras and Poisson geometry, Moscow Math. J., 3 (2003), 899–934.
-
(2003)
Moscow Math. J.
, vol.3
, pp. 899-934
-
-
Gekhtman, M.1
Shapiro, M.2
Vainshtein, A.3
-
12
-
-
0003270999
-
Total positivity in reductive groups
-
Birkhäuser Boston, Cambridge, MA
-
G. Lusztig, Total positivity in reductive groups, in Lie Theory and Geometry, Progress in Mathematics, Vol. 123, Birkhäuser Boston, Cambridge, MA, 1994, 531–568.
-
(1994)
Lie Theory and Geometry, Progress in Mathematics
, vol.123
, pp. 531-568
-
-
Lusztig, G.1
-
13
-
-
84968495738
-
Canonical bases arising from quantized enveloping algebras
-
G. Lusztig, Canonical bases arising from quantized enveloping algebras, J. Amer. Math. Soc., 3-2 (1990), 447–498.
-
(1990)
J. Amer. Math. Soc.
, vol.3-2
, pp. 447-498
-
-
Lusztig, G.1
|