메뉴 건너뛰기




Volumn 2015, Issue 1, 2015, Pages

Voice conversion using speaker-dependent conditional restricted Boltzmann machine

Author keywords

Conditional restricted Boltzmann machine; Deep learning; Recurrent neural network; Speaker specific features; Voice conversion

Indexed keywords

RECURRENT NEURAL NETWORKS;

EID: 84924309945     PISSN: 16874714     EISSN: 16874722     Source Type: Journal    
DOI: 10.1186/s13636-014-0044-3     Document Type: Article
Times cited : (16)

References (44)
  • 3
    • 80052698826 scopus 로고    scopus 로고
    • Speaking-aid systems using GMM-based voice conversion for electrolaryngeal speech
    • K Nakamura, T Toda, H Saruwatari, K Shikano, Speaking-aid systems using GMM-based voice conversion for electrolaryngeal speech. Speech Commun. 54(1), 134–146 (2012).
    • (2012) Speech Commun , vol.54 , Issue.1 , pp. 134-146
    • Nakamura, K.1    Toda, T.2    Saruwatari, H.3    Shikano, K.4
  • 6
    • 0021412027 scopus 로고
    • Vector quantization
    • R Gray, Vector quantization. ASSP Mag. IEEE. 1(2), 4–29 (1984).
    • (1984) ASSP Mag. IEEE , vol.1 , Issue.2 , pp. 4-29
    • Gray, R.1
  • 7
    • 0026880275 scopus 로고
    • Voice transformation using PSOLA technique
    • H Valbret, E Moulines, J-P Tubach, Voice transformation using PSOLA technique. Speech Commun. 11(2), 175–187 (1992).
    • (1992) Speech Commun , vol.11 , Issue.2 , pp. 175-187
    • Valbret, H.1    Moulines, E.2    Tubach, J.-P.3
  • 9
    • 57749193836 scopus 로고    scopus 로고
    • Voice conversion based on maximum-likelihood estimation of spectral parameter trajectory
    • T Toda, AW Black, K Tokuda, Voice conversion based on maximum-likelihood estimation of spectral parameter trajectory. IEEE Trans. Audio Speech Lang. Process. 15(8), 2222–2235 (2007).
    • (2007) IEEE Trans. Audio Speech Lang. Process , vol.15 , Issue.8 , pp. 2222-2235
    • Toda, T.1    Black, A.W.2    Tokuda, K.3
  • 15
    • 35148852326 scopus 로고    scopus 로고
    • Z Yang, in Proceedings of International Conference on Software Engineering, Artificial Intelligence, Networking, and Parallel/Distributed Computing
    • Z Jian, Z Yang, in Proceedings of International Conference on Software Engineering, Artificial Intelligence, Networking, and Parallel/Distributed Computing. Voice conversion using canonical correlation analysis based on Gaussian mixture model, (2007), pp. 210–215.
    • (2007) Voice conversion using canonical correlation analysis based on Gaussian mixture model , pp. 210-215
  • 17
    • 0029254176 scopus 로고
    • Transformation of formants for voice conversion using artificial neural networks
    • M Narendranath, HA Murthy, S Rajendran, B Yegnanarayana, Transformation of formants for voice conversion using artificial neural networks. Speech Commun. 16(2), 207–216 (1995).
    • (1995) Speech Commun , vol.16 , Issue.2 , pp. 207-216
    • Narendranath, M.1    Murthy, H.A.2    Rajendran, S.3    Yegnanarayana, B.4
  • 19
    • 4544270860 scopus 로고    scopus 로고
    • Y-J Wu, H Kawai, J Ni, R-H Wang, in Proceedings of IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP). Minimum segmentation error based discriminative training for speech synthesis application, (2004), p. 629
    • Y-J Wu, H Kawai, J Ni, R-H Wang, in Proceedings of IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP). Minimum segmentation error based discriminative training for speech synthesis application, (2004), p. 629.
    • (2004)
  • 21
    • 38549096029 scopus 로고    scopus 로고
    • A speech parameter generation algorithm considering global variance for HMM-based speech synthesis
    • T Tomoki, K Tokuda, A speech parameter generation algorithm considering global variance for HMM-based speech synthesis. IEICE Trans. Inform. Syst. 90(5), 816–824 (2007).
    • (2007) IEICE Trans. Inform. Syst , vol.90 , Issue.5 , pp. 816-824
    • Tomoki, T.1    Tokuda, K.2
  • 22
    • 84901793334 scopus 로고    scopus 로고
    • Minimum Kullback-Leibler divergence parameter generation for HMM-based speech synthesis
    • Z-H Ling, L-R Dai, Minimum Kullback-Leibler divergence parameter generation for HMM-based speech synthesis. IEEE Trans. Audio Speech Lang. Process. 20(5), 1492–1502 (2012).
    • (2012) IEEE Trans. Audio Speech Lang. Process , vol.20 , Issue.5 , pp. 1492-1502
    • Ling, Z.-H.1    Dai, L.-R.2
  • 26
    • 0000329993 scopus 로고
    • Information processing in dynamical systems: foundations of harmony theory
    • P Smolensky, Information processing in dynamical systems: foundations of harmony theory. Parallel Distributed Process. 1, 194–281 (1986).
    • (1986) Parallel Distributed Process , vol.1 , pp. 194-281
    • Smolensky, P.1
  • 27
    • 33745805403 scopus 로고    scopus 로고
    • A fast learning algorithm for deep belief nets
    • GE Hinton, S Osindero, Y-W Teh, A fast learning algorithm for deep belief nets. Neural Comput. 18(7), 1527–1554 (2006).
    • (2006) Neural Comput , vol.18 , Issue.7 , pp. 1527-1554
    • Hinton, G.E.1    Osindero, S.2    Teh, Y.-W.3
  • 28
    • 84901237776 scopus 로고    scopus 로고
    • Modeling spectral envelopes using restricted Boltzmann machines and deep belief networks for statistical parametric speech synthesis
    • Z-H Ling, L Deng, D Yu, Modeling spectral envelopes using restricted Boltzmann machines and deep belief networks for statistical parametric speech synthesis. IEEE Trans. Audio Speech Lang. Process. 21(10), 2129–2139 (2013).
    • (2013) IEEE Trans. Audio Speech Lang. Process , vol.21 , Issue.10 , pp. 2129-2139
    • Ling, Z.-H.1    Deng, L.2    Yu, D.3
  • 30
    • 78149306047 scopus 로고    scopus 로고
    • 3-D object recognition with deep belief nets
    • V Nair, G Hinton, 3-D object recognition with deep belief nets. Adv. Neural Inform. Process. Syst. 22, 1339–1347 (2009).
    • (2009) Adv. Neural Inform. Process. Syst , vol.22 , pp. 1339-1347
    • Nair, V.1    Hinton, G.2
  • 31
    • 84991233704 scopus 로고    scopus 로고
    • Bender, H Ney, in Proceedings of the Fourth Workshop on Statistical Machine Translation
    • T Deselaers, S Hasan, O Bender, H Ney, in Proceedings of the Fourth Workshop on Statistical Machine Translation. A deep learning approach to machine transliteration, (2009), pp. 233–241.
    • (2009) A deep learning approach to machine transliteration , pp. 233-241
    • T Deselaers, S.1    Hasan, O.2
  • 32
    • 84924311711 scopus 로고    scopus 로고
    • H Li, in Proceedings of the IEEE China Summit and International Conference on Signal and Information Processing (ChinaSIP)
    • Z Wu, ES Chng, H Li, in Proceedings of the IEEE China Summit and International Conference on Signal and Information Processing (ChinaSIP). Conditional restricted Boltzmann machine for voice conversion, (2013).
    • (2013) Conditional restricted Boltzmann machine for voice conversion
    • Wu, Z.1    Chng, E.S.2
  • 34
    • 0001578518 scopus 로고
    • A learning algorithm for Boltzmann machines
    • DH Ackley, GE Hinton, TJ Sejnowski, A learning algorithm for Boltzmann machines. Cogn. Sci. 9(1), 147–169 (1985).
    • (1985) Cogn. Sci , vol.9 , Issue.1 , pp. 147-169
    • Ackley, D.H.1    Hinton, G.E.2    Sejnowski, T.J.3
  • 35
    • 0345368881 scopus 로고
    • Unsupervised learning of distributions of binary vectors using two layer networks
    • Y Freund, D Haussler, Unsupervised learning of distributions of binary vectors using two layer networks. Adv, Neural Inform. Process. Syst. 4, 912–919 (1991).
    • (1991) Adv, Neural Inform. Process. Syst , vol.4 , pp. 912-919
    • Freund, Y.1    Haussler, D.2
  • 36
    • 33746600649 scopus 로고    scopus 로고
    • Reducing the dimensionality of data with neural networks
    • GE Hinton, RR Salakhutdinov, Reducing the dimensionality of data with neural networks. Science. 313(5786), 504–507 (2006).
    • (2006) Science , vol.313 , Issue.5786 , pp. 504-507
    • Hinton, G.E.1    Salakhutdinov, R.R.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.