메뉴 건너뛰기




Volumn 44, Issue 3, 2015, Pages 486-507

The Performance of RMSEA in Models With Small Degrees of Freedom

Author keywords

degrees of freedom; model fit; RMSEA; structural equation modeling

Indexed keywords


EID: 84924218646     PISSN: 00491241     EISSN: 15528294     Source Type: Journal    
DOI: 10.1177/0049124114543236     Document Type: Article
Times cited : (1526)

References (30)
  • 1
    • 4243159210 scopus 로고
    • Significance Tests and Goodness of Fit in the Analysis of Covariance Structures
    • P.M.BentlerPeter M.D.G.BonettDouglas G. 1980. “Significance Tests and Goodness of Fit in the Analysis of Covariance Structures.”Psychological Bulletin88:588–606.
    • (1980) Psychological Bulletin , vol.88 , pp. 588-606
    • Bentler, P.M.1    Bonett, D.G.2
  • 2
    • 2442604664 scopus 로고    scopus 로고
    • Adding Variables to Improve Fit: The Effect of Model Size on Fit Assessment in LISREL
    • Cudeck R., du Toit S.H.C., Sörbom D., (eds), Lincolnwood, IL: Scientific Software International,, Pp., in,, edited by
    • E.BreivikEinarU.H.OlssonUlf H. 2001. “Adding Variables to Improve Fit: The Effect of Model Size on Fit Assessment in LISREL.” Pp. 169–94 in Structural Equation Modeling: Present and Future, edited by R.CudeckRobertS.H.C.du ToitD.SörbomDag. Lincolnwood, IL: Scientific Software International.
    • (2001) Structural Equation Modeling: Present and Future , pp. 169-194
    • Breivik, E.1    Olsson, U.H.2
  • 3
    • 0001233581 scopus 로고
    • Alternative Ways of Assessing Model Fit
    • Bollen K.A., Scott Long J., (eds), Newbury Park, CA: Sage,, Pp., in,, edited by
    • M.W.BrowneMichael W.R.CudeckRobert. 1993. “Alternative Ways of Assessing Model Fit.” Pp. 136–62 in Testing Structural Equation Models, edited by K.A.BollenKenneth A.J.Scott Long. Newbury Park, CA: Sage.
    • (1993) Testing Structural Equation Models , pp. 136-162
    • Browne, M.W.1    Cudeck, R.2
  • 4
    • 42549141146 scopus 로고    scopus 로고
    • An Empirical Evaluation of the Use of Fixed Cutoff Points in RMSEA Test Statistic in Structural Equation Models
    • F.ChenFeinianP.J.CurranPatrick J.K.A.BollenKenneth A.J.B.KirbyJames B.P.PaxtonPamela. 2008. “An Empirical Evaluation of the Use of Fixed Cutoff Points in RMSEA Test Statistic in Structural Equation Models.”Sociological Methods and Research36:462–94.
    • (2008) Sociological Methods and Research , vol.36 , pp. 462-494
    • Chen, F.1    Curran, P.J.2    Bollen, K.A.3    Kirby, J.B.4    Paxton, P.5
  • 5
    • 0001886394 scopus 로고    scopus 로고
    • A Latent Curve Framework for Studying Developmental Trajectories of Adolescent Substance Use
    • Rose J.S., Chassin L., Presson C.C., Sherman S.J., (eds), Hillsdale, NJ: Erlbaum,, Pp., in,, edited by
    • P.J.CurranPatrick J.2000. “A Latent Curve Framework for Studying Developmental Trajectories of Adolescent Substance Use.” Pp. 1–42 in Multivariate Applications in Substance Use Research, edited by J.S.RoseJennifer S.L.ChassinLaurieC.C.PressonClark C.S.J.ShermanSteven J. Hillsdale, NJ: Erlbaum.
    • (2000) Multivariate Applications in Substance Use Research , pp. 1-42
    • Curran, P.J.1
  • 6
    • 0242509779 scopus 로고    scopus 로고
    • Finite Sampling Properties of the Point Estimates and Confidence Intervals of the RMSEA
    • P.J.CurranPatrick J.K.A.BollenKenneth A.F.ChenFeinianP.PaxtonPamelaJ.B.KirbyJames B. 2003. “Finite Sampling Properties of the Point Estimates and Confidence Intervals of the RMSEA.”Sociological Methods and Research32:208–52.
    • (2003) Sociological Methods and Research , vol.32 , pp. 208-252
    • Curran, P.J.1    Bollen, K.A.2    Chen, F.3    Paxton, P.4    Kirby, J.B.5
  • 7
    • 0036321402 scopus 로고    scopus 로고
    • The Noncentral Chi-square Distribution in Misspecified Structural Equation Models: Finite Sample Results from a Monte Carlo Simulation
    • P.J.CurranPatrick J.K.A.BollenKenneth A.P.PaxtonPamelaJ.B.KirbyJames B.F.ChenFeinian. 2002. “The Noncentral Chi-square Distribution in Misspecified Structural Equation Models: Finite Sample Results from a Monte Carlo Simulation.”Multivariate Behavioral Research37:1–36.
    • (2002) Multivariate Behavioral Research , vol.37 , pp. 1-36
    • Curran, P.J.1    Bollen, K.A.2    Paxton, P.3    Kirby, J.B.4    Chen, F.5
  • 8
    • 0001922927 scopus 로고    scopus 로고
    • The Robustness of Test Statistics to Non-normality and Specification Error in Confirmatory Factor Analysis
    • P.J.CurranPatrick J.S.G.WestStephen G.J.FinchJohn. 1996. “The Robustness of Test Statistics to Non-normality and Specification Error in Confirmatory Factor Analysis.”Psychological Methods1:16–29.
    • (1996) Psychological Methods , vol.1 , pp. 16-29
    • Curran, P.J.1    West, S.G.2    Finch, J.3
  • 10
    • 0001374062 scopus 로고
    • Relationship between Job and Family Satisfaction: Causal or Noncausal Covariation?
    • M.R.FroneMichael R.M.RussellMarciaM.Lynn Cooper. 1994. “Relationship between Job and Family Satisfaction: Causal or Noncausal Covariation?”Journal of Management20:565–79.
    • (1994) Journal of Management , vol.20 , pp. 565-579
    • Frone, M.R.1    Russell, M.2    Lynn Cooper, M.3
  • 11
  • 12
    • 67650706330 scopus 로고    scopus 로고
    • Cutoff Criteria for Fit Indexes in Covariance Structure Analysis: Conventional Criteria versus New Alternatives
    • L.-T.HuLi-TzeP.M.BentlerPeter M. 1999. “Cutoff Criteria for Fit Indexes in Covariance Structure Analysis: Conventional Criteria versus New Alternatives.”Structural Equation Modeling6:1–55.
    • (1999) Structural Equation Modeling , vol.6 , pp. 1-55
    • Hu, L.-T.1    Bentler, P.M.2
  • 13
    • 64649086851 scopus 로고    scopus 로고
    • Reporting Practices in Confirmatory Factor Analysis: An Overview and Some Recommendations
    • D.L.JacksonDennis L.J.Arthur GillaspyR.Purc-StephensonRebecca. 2009. “Reporting Practices in Confirmatory Factor Analysis: An Overview and Some Recommendations.”Psychological Methods14:6–23.
    • (2009) Psychological Methods , vol.14 , pp. 6-23
    • Jackson, D.L.1    Arthur Gillaspy, J.2    Purc-Stephenson, R.3
  • 14
    • 43049129277 scopus 로고    scopus 로고
    • Reciprocal Influences in Children’s and Families’ Adaptation to Early Childhood Wheezing
    • A.S.KaugarsAstrida S.M.D.KlinnertMary D.J.L.RobinsonJane L.M.HoMartin. 2008. “Reciprocal Influences in Children’s and Families’ Adaptation to Early Childhood Wheezing.”Health Psychology27:258–67.
    • (2008) Health Psychology , vol.27 , pp. 258-267
    • Kaugars, A.S.1    Klinnert, M.D.2    Robinson, J.L.3    Ho, M.4
  • 15
    • 33947414695 scopus 로고    scopus 로고
    • Effect of the Number of Variables on Measures of Fit in Structural Equation Modeling
    • D.A.KennyDavid A.D.Betsy McCoach. 2003. “Effect of the Number of Variables on Measures of Fit in Structural Equation Modeling.”Structural Equation Modeling10:333–51.
    • (2003) Structural Equation Modeling , vol.10 , pp. 333-351
    • Kenny, D.A.1    Betsy McCoach, D.2
  • 16
    • 24944586514 scopus 로고    scopus 로고
    • The Relation Among Fit Indexes, Power, and Sample Size in Structural Equation Modeling
    • K.H.KimKevin H.2005. “The Relation Among Fit Indexes, Power, and Sample Size in Structural Equation Modeling.”Structural Equation Modeling12:368–90.
    • (2005) Structural Equation Modeling , vol.12 , pp. 368-390
    • Kim, K.H.1
  • 17
    • 0742288001 scopus 로고    scopus 로고
    • Applying Latent Growth Curve Modeling to the Investigation of Individual Differences in Cardiovascular Recovery from Stress
    • M.M.LlabreMaria M.S.B.SpitzerSusan B.S.D.SiegelScott D.P.G.SaabPatrice G.N.SchneidermanNeil. 2004. “Applying Latent Growth Curve Modeling to the Investigation of Individual Differences in Cardiovascular Recovery from Stress.”Psychosomatic Medicine66: 29–34.
    • (2004) Psychosomatic Medicine , vol.66 , pp. 29-34
    • Llabre, M.M.1    Spitzer, S.B.2    Siegel, S.D.3    Saab, P.G.4    Schneiderman, N.5
  • 18
    • 0007176266 scopus 로고
    • The Need for Alternative Measures of Fit in Covariance Structure Modeling
    • R.C.MacCallumRobert C.1990. “The Need for Alternative Measures of Fit in Covariance Structure Modeling.”Multivariate Behavioral Research25:157–62.
    • (1990) Multivariate Behavioral Research , vol.25 , pp. 157-162
    • MacCallum, R.C.1
  • 19
    • 0013118140 scopus 로고    scopus 로고
    • Power Analysis and Determination of Sample Size for Covariance Structure Modeling
    • R.C.MacCallumRobert C.M.W.BrowneMichael W.H.M.SugawaraHazuki M. 1996. “Power Analysis and Determination of Sample Size for Covariance Structure Modeling.”Psychological Methods1:130–149.
    • (1996) Psychological Methods , vol.1 , pp. 130-149
    • MacCallum, R.C.1    Browne, M.W.2    Sugawara, H.M.3
  • 20
  • 21
    • 79955416090 scopus 로고    scopus 로고
    • Structural Models and the Art of Approximation
    • R.P.McDonaldRoderick P.2010. “Structural Models and the Art of Approximation.”Perspectives on Psychological Science5:675–86.
    • (2010) Perspectives on Psychological Science , vol.5 , pp. 675-686
    • McDonald, R.P.1
  • 22
    • 85047669360 scopus 로고    scopus 로고
    • Principles and Practice in Reporting Structural Equation Analyses
    • R.P.McDonaldRoderick P.M.-H.R.HoMoon-Ho R. 2002. “Principles and Practice in Reporting Structural Equation Analyses.”Psychological Methods7:64–82.
    • (2002) Psychological Methods , vol.7 , pp. 64-82
    • McDonald, R.P.1    Ho, M.-H.R.2
  • 23
    • 33846813891 scopus 로고    scopus 로고
    • Structural Equation Modeling Made Difficult
    • R.E.MillsapRoger E.2007. “Structural Equation Modeling Made Difficult.”Personality and Individual Differences42:875–881.
    • (2007) Personality and Individual Differences , vol.42 , pp. 875-881
    • Millsap, R.E.1
  • 25
    • 0034335471 scopus 로고    scopus 로고
    • Improving the Root Mean Square Error of Approximation for Nonnormal Conditions in Structural Equation Modeling
    • J.NevittJonathonG.R.HancockGregory R. 2000. “Improving the Root Mean Square Error of Approximation for Nonnormal Conditions in Structural Equation Modeling.”Journal of Experimental Education68:251–68.
    • (2000) Journal of Experimental Education , vol.68 , pp. 251-268
    • Nevitt, J.1    Hancock, G.R.2
  • 26
    • 0001890648 scopus 로고    scopus 로고
    • CFI versus RMSEA: A Comparison of Two Fit Indexes for Structural Equation Modeling
    • E.E.RigdonEdward E. (1996). “CFI versus RMSEA: A Comparison of Two Fit Indexes for Structural Equation Modeling.”Structural Equation Modeling3:369–79.
    • (1996) Structural Equation Modeling , vol.3 , pp. 369-379
    • Rigdon, E.E.1
  • 27
    • 27644490585 scopus 로고    scopus 로고
    • Dyadic Interdependence on Affect and Quality of Life Trajectories among Women with Breast Cancer and Their Partners
    • C.SegrinChrisT.A.BadgerTerry A.P.MeekPaulaA.M.LopezAna M.E.BonhamElizabethA.SiegerAmelia. 2005. “Dyadic Interdependence on Affect and Quality of Life Trajectories among Women with Breast Cancer and Their Partners.”Journal of Social and Personal Relationships22:673–89.
    • (2005) Journal of Social and Personal Relationships , vol.22 , pp. 673-689
    • Segrin, C.1    Badger, T.A.2    Meek, P.3    Lopez, A.M.4    Bonham, E.5    Sieger, A.6
  • 29
    • 84874071055 scopus 로고    scopus 로고
    • Model Fit and Model Selection in Structural Equation Modeling
    • Hoyle R.H., (ed), New York: Guilford,, Pp., in,, edited by
    • S.G.WestStephen G.A.B.TaylorAaron B.W.WuWei. (2012). “Model Fit and Model Selection in Structural Equation Modeling.” Pp. 209–31 in Handbook of Structural Equation Modeling, edited by R.H.Hoyle. New York: Guilford.
    • (2012) Handbook of Structural Equation Modeling , pp. 209-231
    • West, S.G.1    Taylor, A.B.2    Wu, W.3
  • 30
    • 0000189486 scopus 로고
    • Antecedents and Consequences of Satisfaction and Commitment in Turnover Models: A Reanalysis Using Latent Variable Structural Equation Methods
    • L.J.WilliamsLarry J.J.T.HazerJohn T. 1986. “Antecedents and Consequences of Satisfaction and Commitment in Turnover Models: A Reanalysis Using Latent Variable Structural Equation Methods.”Journal of Applied Psychology71:219–31.
    • (1986) Journal of Applied Psychology , vol.71 , pp. 219-231
    • Williams, L.J.1    Hazer, J.T.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.