메뉴 건너뛰기




Volumn , Issue , 2014, Pages 357-364

Predicting traffic congestion in presence of planned special events

Author keywords

Event analysis; Planned special event; Traffic prediction

Indexed keywords

ADVANCED TRAVELER INFORMATION SYSTEMS; FORECASTING; MULTIMEDIA SYSTEMS; NEAREST NEIGHBOR SEARCH; PATTERN RECOGNITION; ROADS AND STREETS;

EID: 84923885010     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (7)

References (21)
  • 1
    • 0000581356 scopus 로고
    • An introduction to kernel and nearestneighbor nonparametric regression
    • N. S. Altman. An introduction to kernel and nearestneighbor nonparametric regression. The American Statistician, 46(3):175–185, 1992.
    • (1992) The American Statistician , vol.46 , Issue.3 , pp. 175-185
    • Altman, N.S.1
  • 3
    • 0037336276 scopus 로고    scopus 로고
    • Traffic prediction using multivariate nonparametric regression
    • S. Clark. Traffic prediction using multivariate nonparametric regression. Journal of transportation engineering, 129(2):161–168, 2003.
    • (2003) Journal of Transportation Engineering , vol.129 , Issue.2 , pp. 161-168
    • Clark, S.1
  • 4
    • 34248343079 scopus 로고    scopus 로고
    • Exploratory spatio-temporal data mining and visualization
    • Visual Languages and Techniques for Human-GIS Interaction
    • P. Compieta, S. Di Martino, M. Bertolotto, F. Ferrucci, and T. Kechadi. Exploratory spatio-temporal data mining and visualization. Journal of Visual Languages and Computing, 18(3):255–279, 2007. Visual Languages and Techniques for Human-GIS Interaction.
    • (2007) Journal of Visual Languages and Computing , vol.18 , Issue.3 , pp. 255-279
    • Compieta, P.1    Di Martino, S.2    Bertolotto, M.3    Ferrucci, F.4    Kechadi, T.5
  • 8
    • 0036848533 scopus 로고    scopus 로고
    • Performance evaluation of short-term time-series traffic prediction model
    • S. Ishak and H. Al-Deek. Performance evaluation of short-term time-series traffic prediction model. Journal of Transportation Engineering, 128(6):490–498, 2002.
    • (2002) Journal of Transportation Engineering , vol.128 , Issue.6 , pp. 490-498
    • Ishak, S.1    Al-Deek, H.2
  • 9
    • 33846044818 scopus 로고    scopus 로고
    • Components of congestion: Delay from incidents, special events, lane closures, weather, potential ramp metering gain, and excess demand
    • J. Kwon, M. Mauch, and P. Varaiya. Components of congestion: Delay from incidents, special events, lane closures, weather, potential ramp metering gain, and excess demand. Transportation Research Record: Journal of the Transportation Research Board, 1959(1):84–91, 2006.
    • (2006) Transportation Research Record: Journal of the Transportation Research Board , vol.1959 , Issue.1 , pp. 84-91
    • Kwon, J.1    Mauch, M.2    Varaiya, P.3
  • 11
    • 40349102104 scopus 로고    scopus 로고
    • Online learning solutions for freeway travel time prediction. Intelligent Transportation Systems
    • March
    • J. W. C. Van Lint. Online learning solutions for freeway travel time prediction. Intelligent Transportation Systems, IEEE Transactions on, 9(1):38–47, March 2008.
    • (2008) IEEE Transactions On , vol.9 , Issue.1 , pp. 38-47
    • Van Lint, J.1
  • 12
    • 81055138684 scopus 로고    scopus 로고
    • Byers. Big data: The next frontier for innovation, competition, and productivity
    • McKinsey Global Institute
    • J. Manyika, M. Chui, B. Brown, J. Bughin, R. Dobbs, C. Roxburgh, and A. H. Byers. Big data: The next frontier for innovation, competition, and productivity. Technical report, McKinsey Global Institute, 2011.
    • (2011) Technical Report
    • Manyika, J.1    Chui, M.2    Brown, B.3    Bughin, J.4    Dobbs, R.5    Roxburgh, C.A.H.6
  • 17
    • 0032779078 scopus 로고    scopus 로고
    • Spectral basis neural networks for real-time travel time forecasting
    • D. Park, L. Rilett, and G. Han. Spectral basis neural networks for real-time travel time forecasting. Journal of Transportation Engineering, 125(6):515–523, 1999.
    • (1999) Journal of Transportation Engineering , vol.125 , Issue.6 , pp. 515-523
    • Park, D.1    Rilett, L.2    Han, G.3
  • 18
    • 84923876562 scopus 로고    scopus 로고
    • White paper - how tomtoms hd traffic and iq routes data provides the very best routing
    • TomTom International, TomTom International
    • TomTom International. White paper - how tomtoms hd traffic and iq routes data provides the very best routing. Technical report, TomTom International, 2009.
    • (2009) Technical Report
  • 19
    • 4544262864 scopus 로고    scopus 로고
    • A comparison of the performance of artificial neural networks and support vector machines for the prediction of traffic speed
    • June
    • L. Vanajakshi and L.R. Rilett. A comparison of the performance of artificial neural networks and support vector machines for the prediction of traffic speed. In Intelligent Vehicles Symposium, 2004 IEEE, pages 194–199, June 2004.
    • (2004) Intelligent Vehicles Symposium, 2004 IEEE , pp. 194-199
    • Vanajakshi, L.1    Rilett, L.R.2
  • 21
    • 0042664086 scopus 로고    scopus 로고
    • Short-term travel time prediction
    • Traffic Detection and Estimation
    • X. Zhang and J. A. Rice. Short-term travel time prediction. Transportation Research Part C: Emerging Technologies, 11(34):187–210, 2003. Traffic Detection and Estimation.
    • (2003) Transportation Research Part C: Emerging Technologies , vol.11 , Issue.34 , pp. 187-210
    • Zhang, X.1    Rice, J.A.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.