메뉴 건너뛰기




Volumn 42, Issue 10, 2015, Pages 4687-4696

Modeling of steelmaking process with effective machine learning techniques

Author keywords

5 Fold cross validation; Artificial neural networks; Dynamic evolving neural fuzzy inference system; Modeling; Prediction; Random forests; Steelmaking process; Support vector regression

Indexed keywords

ABILITY TESTING; ARTIFICIAL INTELLIGENCE; COMPLEX NETWORKS; DECISION TREES; FORECASTING; FUZZY INFERENCE; FUZZY NEURAL NETWORKS; FUZZY SYSTEMS; IRON ORES; IRON SCRAP; LEARNING SYSTEMS; METAL CASTINGS; MODELS; NEURAL NETWORKS; SCRAP METAL; STEEL INGOTS; STEEL METALLURGY; STEEL SCRAP; STEELMAKING;

EID: 84923831927     PISSN: 09574174     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.eswa.2015.01.030     Document Type: Article
Times cited : (75)

References (51)
  • 1
    • 84900013395 scopus 로고    scopus 로고
    • Modeling of EDM responses by support vector machine regression with parameters selected by particle swarm optimization
    • U. Aich, and S. Banerjee Modeling of EDM responses by support vector machine regression with parameters selected by particle swarm optimization Applied Mathematical Modelling 38 2014 2800 2818
    • (2014) Applied Mathematical Modelling , vol.38 , pp. 2800-2818
    • Aich, U.1    Banerjee, S.2
  • 2
    • 65649147967 scopus 로고    scopus 로고
    • A hybrid simulation-adaptive network based fuzzy inference system for improvement of electricity consumption estimation
    • A. Azadeh, M. Saberi, A. Gitiforouz, and Z. Saberi A hybrid simulation-adaptive network based fuzzy inference system for improvement of electricity consumption estimation Expert Systems with Applications 36 2009 11808 11817
    • (2009) Expert Systems with Applications , vol.36 , pp. 11808-11817
    • Azadeh, A.1    Saberi, M.2    Gitiforouz, A.3    Saberi, Z.4
  • 4
    • 34248670693 scopus 로고    scopus 로고
    • Artificial neural networks applied to epoxy composites reinforced with carbon and E-glass fibers: Analysis of the shear mechanical properties
    • E.M. Bezerra, A.C. Ancelotti, L.C. Pardini, J.A.F.F. Rocco, K. Iha, and C.H.C. Ribeiro Artificial neural networks applied to epoxy composites reinforced with carbon and E-glass fibers: Analysis of the shear mechanical properties Materials Science and Engineering A 464 2007 177 185
    • (2007) Materials Science and Engineering A , vol.464 , pp. 177-185
    • Bezerra, E.M.1    Ancelotti, A.C.2    Pardini, L.C.3    Rocco, J.A.F.F.4    Iha, K.5    Ribeiro, C.H.C.6
  • 6
    • 0030211964 scopus 로고    scopus 로고
    • Bagging predictors
    • L. Breiman Bagging predictors Machine Learning 24 1996 123 140
    • (1996) Machine Learning , vol.24 , pp. 123-140
    • Breiman, L.1
  • 7
    • 0035478854 scopus 로고    scopus 로고
    • Random forests
    • L. Breiman Random forests Machine Learning 45 1 2001 5 32
    • (2001) Machine Learning , vol.45 , Issue.1 , pp. 5-32
    • Breiman, L.1
  • 9
    • 58349084454 scopus 로고    scopus 로고
    • An adaptive neuro-fuzzy inference system (ANFIS) model for wire-EDM
    • U. Caydas, A. Hascalik, and S. Ekici An adaptive neuro-fuzzy inference system (ANFIS) model for wire-EDM Expert Systems with Applications 36 2009 6135 6139
    • (2009) Expert Systems with Applications , vol.36 , pp. 6135-6139
    • Caydas, U.1    Hascalik, A.2    Ekici, S.3
  • 13
    • 34249753618 scopus 로고
    • Support-vector networks
    • C. Cortes, and V. Vapnik Support-vector networks Machine Learning 20 3 1995 273 297
    • (1995) Machine Learning , vol.20 , Issue.3 , pp. 273-297
    • Cortes, C.1    Vapnik, V.2
  • 14
    • 33750356120 scopus 로고    scopus 로고
    • Comparison of response surface model with neural network in determining the surface quality of moulded parts
    • T. Erzurumlu, and H. Oktem Comparison of response surface model with neural network in determining the surface quality of moulded parts Materials and Design 28 2 2007 459 465
    • (2007) Materials and Design , vol.28 , Issue.2 , pp. 459-465
    • Erzurumlu, T.1    Oktem, H.2
  • 18
    • 0028543366 scopus 로고
    • Training feed forward networks with the Marquardt algorithm
    • M.T. Hagan, and M.B. Menhaj Training feed forward networks with the Marquardt algorithm IEEE Transactions on Neural Networks 5 1994 989 993
    • (1994) IEEE Transactions on Neural Networks , vol.5 , pp. 989-993
    • Hagan, M.T.1    Menhaj, M.B.2
  • 19
    • 84899437762 scopus 로고    scopus 로고
    • Endpoint prediction model for basic oxygen furnace steel-making based on membrane algorithm evolving extreme learning machine
    • M. Han, and C. Liu Endpoint prediction model for basic oxygen furnace steel-making based on membrane algorithm evolving extreme learning machine Applied Soft Computing 19 2014 430 437
    • (2014) Applied Soft Computing , vol.19 , pp. 430-437
    • Han, M.1    Liu, C.2
  • 22
    • 40149105117 scopus 로고    scopus 로고
    • QSAR study of Heparanase inhibitors activity using artificial neural networks and Levenberg-Marquardt algorithm
    • M. Jalali-Heravi, M. Asadollahi-Baboli, and P. Shahbazikhah QSAR study of Heparanase inhibitors activity using artificial neural networks and Levenberg-Marquardt algorithm European Journal of Medicinal Chemistry 43 2008 548 556
    • (2008) European Journal of Medicinal Chemistry , vol.43 , pp. 548-556
    • Jalali-Heravi, M.1    Asadollahi-Baboli, M.2    Shahbazikhah, P.3
  • 23
    • 79151471046 scopus 로고    scopus 로고
    • Predicting direction of stock price index movement using artificial neural networks and support vector machines: The sample of the Istanbul stock exchange
    • Y. Kara, M.A. Boyacioglu, and O.K. Baykan Predicting direction of stock price index movement using artificial neural networks and support vector machines: The sample of the Istanbul stock exchange Expert Systems with Applications 38 2011 5311 5319
    • (2011) Expert Systems with Applications , vol.38 , pp. 5311-5319
    • Kara, Y.1    Boyacioglu, M.A.2    Baykan, O.K.3
  • 24
    • 44949242313 scopus 로고    scopus 로고
    • Delamination analysis in high speed drilling of carbon fiber reinforced plastics (CFRP) using artificial neural network model
    • S.R. Karnik, V.N. Gaitonde, J. Campos Rubio, A. Esteves Correia, A.M. Abrão, and J. Paulo Davim Delamination analysis in high speed drilling of carbon fiber reinforced plastics (CFRP) using artificial neural network model Materials and Design 29 2008 1768 1776
    • (2008) Materials and Design , vol.29 , pp. 1768-1776
    • Karnik, S.R.1    Gaitonde, V.N.2    Campos Rubio, J.3    Esteves Correia, A.4    Abrão, A.M.5    Paulo Davim, J.6
  • 25
    • 0036530967 scopus 로고    scopus 로고
    • DENFIS: Dynamic evolving neural-fuzzy inference system and its application for time-series prediction
    • N. Kasabov, and Q. Song DENFIS: Dynamic evolving neural-fuzzy inference system and its application for time-series prediction IEEE Transactions on Fuzzy Systems 10 2002 144 154
    • (2002) IEEE Transactions on Fuzzy Systems , vol.10 , pp. 144-154
    • Kasabov, N.1    Song, Q.2
  • 26
    • 84899800725 scopus 로고    scopus 로고
    • A new modified firefly algorithm and support vector regression model for accurate short term load forecasting
    • A. Kavousi-Fard, H. Samet, and F. Marzbani A new modified firefly algorithm and support vector regression model for accurate short term load forecasting Expert Systems with Applications 41 2014 6047 6056
    • (2014) Expert Systems with Applications , vol.41 , pp. 6047-6056
    • Kavousi-Fard, A.1    Samet, H.2    Marzbani, F.3
  • 27
    • 22144481002 scopus 로고    scopus 로고
    • Predicting customer retention and profitability by random forests and regression forests techniques
    • B. Lariviere, and D. Van den Poel Predicting customer retention and profitability by random forests and regression forests techniques Expert Systems with Applications 29 2005 472 484
    • (2005) Expert Systems with Applications , vol.29 , pp. 472-484
    • Lariviere, B.1    Van Den Poel, D.2
  • 28
    • 84871735507 scopus 로고    scopus 로고
    • Comparison of random forest, support vector machine and back propagation neural network for electronic tongue data classification: Application to the recognition of orange beverage and Chinese vinegar
    • M. Liu, M. Wang, J. Wang, and D. Li Comparison of random forest, support vector machine and back propagation neural network for electronic tongue data classification: Application to the recognition of orange beverage and Chinese vinegar Sensors and Actuators, B 177 2013 970 980
    • (2013) Sensors and Actuators, B , vol.177 , pp. 970-980
    • Liu, M.1    Wang, M.2    Wang, J.3    Li, D.4
  • 29
    • 0000169232 scopus 로고
    • An algorithm for least-squares estimation of non-linear parameters
    • D.W. Marquardt An algorithm for least-squares estimation of non-linear parameters Journal Society Industrial Applied Mathematics 11 1963 431 441
    • (1963) Journal Society Industrial Applied Mathematics , vol.11 , pp. 431-441
    • Marquardt, D.W.1
  • 32
    • 80255123452 scopus 로고    scopus 로고
    • Comparing the performance of neural networks developed by using Levenberg-Marquardt and Quasi-Newton with the gradient descent algorithm for modelling a multiple response grinding process
    • I. Mukherjee, and S. Routroy Comparing the performance of neural networks developed by using Levenberg-Marquardt and Quasi-Newton with the gradient descent algorithm for modelling a multiple response grinding process Expert Systems with Applications 39 2012 2397 2407
    • (2012) Expert Systems with Applications , vol.39 , pp. 2397-2407
    • Mukherjee, I.1    Routroy, S.2
  • 33
    • 84859751452 scopus 로고    scopus 로고
    • Modeling spatial patterns of fire occurence in Mediterranean Europe using multiple regression and random forest
    • S. Oliveira, F. Oehler, J. San-Miguel-Ayanz, A. Camia, and J.M.C. Pereira Modeling spatial patterns of fire occurence in Mediterranean Europe using multiple regression and random forest Forest Ecology and Management 275 2012 117 129
    • (2012) Forest Ecology and Management , vol.275 , pp. 117-129
    • Oliveira, S.1    Oehler, F.2    San-Miguel-Ayanz, J.3    Camia, A.4    Pereira, J.M.C.5
  • 34
    • 42949096408 scopus 로고    scopus 로고
    • Artificial neural network modeling of weld joint strength prediction of a pulsed metal inert gas welding process using arc signals
    • M. Pal, S.K. Pal, and A.K. Samantaray Artificial neural network modeling of weld joint strength prediction of a pulsed metal inert gas welding process using arc signals Journal of Materials Processing Technology 202 2008 464 474
    • (2008) Journal of Materials Processing Technology , vol.202 , pp. 464-474
    • Pal, M.1    Pal, S.K.2    Samantaray, A.K.3
  • 36
    • 84858332972 scopus 로고    scopus 로고
    • Optimization of Radial Basis Function neural network employed for prediction of surface roughness in hard turning process using Taguchi's orthogonal arrays
    • F.J. Pontes, A.P. de Paiva, P.P. Balestrassi, J.R. Ferreira, and M.B. da Silva Optimization of Radial Basis Function neural network employed for prediction of surface roughness in hard turning process using Taguchi's orthogonal arrays Expert Systems with Applications 39 9 2012 7776 7787
    • (2012) Expert Systems with Applications , vol.39 , Issue.9 , pp. 7776-7787
    • Pontes, F.J.1    De Paiva, A.P.2    Balestrassi, P.P.3    Ferreira, J.R.4    Da Silva, M.B.5
  • 37
    • 84890427531 scopus 로고    scopus 로고
    • Online tool wear prediction system in the turning process using an adaptive neuro-fuzzy inference system
    • M. Rizal, J.A. Ghani, M.Z. Nuawi, and C.H.C. Haron Online tool wear prediction system in the turning process using an adaptive neuro-fuzzy inference system Applied Soft Computing 13 2013 1960 1968
    • (2013) Applied Soft Computing , vol.13 , pp. 1960-1968
    • Rizal, M.1    Ghani, J.A.2    Nuawi, M.Z.3    Haron, C.H.C.4
  • 38
    • 84889642598 scopus 로고    scopus 로고
    • Evolutionary support vector regression algorithm applied to the prediction of the thickness of the chromium layer in a hard chromium plating process
    • F. Sanchez Lasheras, P.J. Garcia Nieto, F.J. de Cos Juez, and J.A. Vilan Vilan Evolutionary support vector regression algorithm applied to the prediction of the thickness of the chromium layer in a hard chromium plating process Applied Mathematics and Computation 227 2014 164 170
    • (2014) Applied Mathematics and Computation , vol.227 , pp. 164-170
    • Sanchez Lasheras, F.1    Garcia Nieto, P.J.2    De Cos Juez, F.J.3    Vilan Vilan, J.A.4
  • 39
    • 84890117327 scopus 로고    scopus 로고
    • A hybrid intelligent system for medical data classification
    • M. Seera, and C.P. Lim A hybrid intelligent system for medical data classification Expert Systems with Applications 41 2014 2239 2249
    • (2014) Expert Systems with Applications , vol.41 , pp. 2239-2249
    • Seera, M.1    Lim, C.P.2
  • 40
    • 84893332189 scopus 로고    scopus 로고
    • Mathematical modeling of phosphorus prediction in BOF steelmaking process: A fundamental approach to produce low phosphorus steels and ensure direct tap practices
    • Shukla, A. K., & Deo, B. (2007). Mathematical modeling of phosphorus prediction in BOF steelmaking process: A fundamental approach to produce low phosphorus steels and ensure direct tap practices. In International conference on metal and alloys (METALL'07).
    • (2007) International Conference on Metal and Alloys (METALL'07)
    • Shukla, A.K.1    Deo, B.2
  • 44
    • 6344273609 scopus 로고    scopus 로고
    • Dynamic evolving neural-fuzzy inference system (DENFIS): On-line learning and application for time-series prediction
    • Iizuka, Fukuoka, Japan
    • Song, Q., & Kasabov, N. (2000). Dynamic evolving neural-fuzzy inference system (DENFIS): On-line learning and application for time-series prediction. In Proceedings of 6th international conference on soft computing (pp. 696-670). Iizuka, Fukuoka, Japan.
    • (2000) Proceedings of 6th International Conference on Soft Computing , pp. 696-670
    • Song, Q.1    Kasabov, N.2
  • 45
    • 0021892282 scopus 로고
    • Fuzzy identification of systems and its applications to modeling and control
    • T. Takagi, and M. Sugeno Fuzzy identification of systems and its applications to modeling and control IEEE Transactions on Systems, Man, Cybernetics 15 1985 116 132
    • (1985) IEEE Transactions on Systems, Man, Cybernetics , vol.15 , pp. 116-132
    • Takagi, T.1    Sugeno, M.2
  • 46
    • 77955716349 scopus 로고    scopus 로고
    • A novel application of neuro-fuzzy computational technique in event-based rainfall-runoff modeling
    • A. Talei, L.H.C. Chua, and C. Quek A novel application of neuro-fuzzy computational technique in event-based rainfall-runoff modeling Expert Systems with Applications 37 2010 7456 7468
    • (2010) Expert Systems with Applications , vol.37 , pp. 7456-7468
    • Talei, A.1    Chua, L.H.C.2    Quek, C.3
  • 47
    • 67349286428 scopus 로고    scopus 로고
    • Prediction of silicon content in hot metal using support vector regression based on chaos particle swarm optimization
    • X. Tang, L. Zhuang, and C. Jiang Prediction of silicon content in hot metal using support vector regression based on chaos particle swarm optimization Expert Systems with Applications 36 2009 11853 11857
    • (2009) Expert Systems with Applications , vol.36 , pp. 11853-11857
    • Tang, X.1    Zhuang, L.2    Jiang, C.3
  • 48
    • 52949094240 scopus 로고    scopus 로고
    • Optimal laser-cutting parameters for QFN packages by utilizing artificial neural networks and genetic algorithm
    • M.J. Tsai, C.H. Li, and C.C. Chen Optimal laser-cutting parameters for QFN packages by utilizing artificial neural networks and genetic algorithm Journal of Materials Processing Technology 208 2008 270 283
    • (2008) Journal of Materials Processing Technology , vol.208 , pp. 270-283
    • Tsai, M.J.1    Li, C.H.2    Chen, C.C.3
  • 49
    • 58349116623 scopus 로고    scopus 로고
    • Customer churn prediction using improved balanced random forests
    • Y. Xie, X. Li, E.W.T. Ngai, and W. Ying Customer churn prediction using improved balanced random forests Expert Systems with Applications 36 2009 5445 5449
    • (2009) Expert Systems with Applications , vol.36 , pp. 5445-5449
    • Xie, Y.1    Li, X.2    Ngai, E.W.T.3    Ying, W.4
  • 50
    • 84871899274 scopus 로고    scopus 로고
    • Support vector regression based models to predict fracture characteristics of high strength and ultra high strength concrete
    • P. Yuvaraj, A.R. Murty, N.R. Iyer, S.K. Sekar, and P. Samui Support vector regression based models to predict fracture characteristics of high strength and ultra high strength concrete Engineering Fracture Mechanics 98 2013 29 43
    • (2013) Engineering Fracture Mechanics , vol.98 , pp. 29-43
    • Yuvaraj, P.1    Murty, A.R.2    Iyer, N.R.3    Sekar, S.K.4    Samui, P.5


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.