메뉴 건너뛰기




Volumn 60, Issue 2, 2014, Pages 169-190

On the edge-reconstruction number of a tree

Author keywords

[No Author keywords available]

Indexed keywords


EID: 84923539745     PISSN: 10344942     EISSN: 22023518     Source Type: Journal    
DOI: None     Document Type: Article
Times cited : (1)

References (17)
  • 1
    • 77958466475 scopus 로고    scopus 로고
    • A survey of some open questions in reconstruction numbers
    • K. Asciak, M.A. Francalanza, J. Lauri and W. Myrvold, A survey of some open questions in reconstruction numbers, Ars Combin. 97 (2010), 443–456.
    • (2010) Ars Combin , vol.97 , pp. 443-456
    • Asciak, K.1    Francalanza, M.A.2    Lauri, J.3    Myrvold, W.4
  • 2
    • 77955555753 scopus 로고    scopus 로고
    • Degree-associated reconstruction number of graphs
    • M.D. Barrus and D.B. West, Degree-associated reconstruction number of graphs, Discrete Math. 310 (2010), 2600–2612.
    • (2010) Discrete Math , vol.310 , pp. 2600-2612
    • Barrus, M.D.1    West, D.B.2
  • 3
    • 84971180732 scopus 로고
    • On Kelly’s congruence theorem for trees, Proc. Cambridge Philos
    • J.A. Bondy, On Kelly’s congruence theorem for trees, Proc. Cambridge Philos. Soc. 65 (1969), 387–397.
    • (1969) Soc , vol.65 , pp. 387-397
    • Bondy, J.A.1
  • 4
    • 0039236270 scopus 로고
    • On the class-reconstruction number of trees
    • F. Harary and J. Lauri, On the class-reconstruction number of trees, Quart. J. Math. Oxford (2) 39 (1988), 47–60
    • (1988) Quart. J. Math. Oxford (2) , vol.39 , pp. 47-60
    • Harary, F.1    Lauri, J.2
  • 5
    • 0039089786 scopus 로고
    • On similar points of a graph
    • F. Harary and E.M. Palmer, On similar points of a graph, J. Math. Mech. 15 (1966), 623–630.
    • (1966) J. Math. Mech , vol.15 , pp. 623-630
    • Harary, F.1    Palmer, E.M.2
  • 6
    • 85032070732 scopus 로고
    • The graph reconstruction number
    • F. Harary and M. Plantholt, The graph reconstruction number, J. Graph Theory. 9 (1985) 451–454.
    • (1985) J. Graph Theory , vol.9 , pp. 451-454
    • Harary, F.1    Plantholt, M.2
  • 7
    • 0041014870 scopus 로고
    • The reconstruction of a tree from its maximal subtrees, Canad
    • F. Harary and E. Palmer, The reconstruction of a tree from its maximal subtrees, Canad. J. Math. 18 (1966), 803–810.
    • (1966) J. Math , vol.18 , pp. 803-810
    • Harary, F.1    Palmer, E.2
  • 8
    • 84972518116 scopus 로고
    • A congruence theorem for trees, Pacific
    • P.J. Kelly, A congruence theorem for trees, Pacific J. Math. 7 (1957), 961–968.
    • (1957) J. Math , vol.7 , pp. 961-968
    • Kelly, P.J.1
  • 10
    • 0039236237 scopus 로고
    • Interchanging branches and similarity in a tree
    • I. Krasikov, Interchanging branches and similarity in a tree, Graphs Combin. 7 (1991), 165–175.
    • (1991) Graphs Combin , vol.7 , pp. 165-175
    • Krasikov, I.1
  • 11
    • 33751168359 scopus 로고
    • Proof of Harary’s conjecture on the reconstruction of trees
    • J. Lauri, Proof of Harary’s conjecture on the reconstruction of trees, Discrete Math. 43 (1983), 79–90.
    • (1983) Discrete Math , vol.43 , pp. 79-90
    • Lauri, J.1
  • 14
    • 84923562779 scopus 로고
    • The edge reconstruction number of a tree, Vishwa Internat
    • R. Molina, The edge reconstruction number of a tree, Vishwa Internat. J. Graph Theory. 2 (1993), 117–130.
    • (1993) J. Graph Theory , vol.2 , pp. 117-130
    • Molina, R.1
  • 15
    • 84986520387 scopus 로고
    • The ally-reconstruction number of a tree with five or more vertices is three
    • W.J. Myrvold, The ally-reconstruction number of a tree with five or more vertices is three, J. Graph Theory. 14 (1990), 149–166.
    • (1990) J. Graph Theory , vol.14 , pp. 149-166
    • Myrvold, W.J.1
  • 17
    • 76649127447 scopus 로고    scopus 로고
    • Reconstructing trees from two cards
    • M. Welhan, Reconstructing trees from two cards, J. Graph Theory. 63 (2010), 243–257.
    • (2010) J. Graph Theory , vol.63 , pp. 243-257
    • Welhan, M.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.