-
1
-
-
77958466475
-
A survey of some open questions in reconstruction numbers
-
K. Asciak, M.A. Francalanza, J. Lauri and W. Myrvold, A survey of some open questions in reconstruction numbers, Ars Combin. 97 (2010), 443–456.
-
(2010)
Ars Combin
, vol.97
, pp. 443-456
-
-
Asciak, K.1
Francalanza, M.A.2
Lauri, J.3
Myrvold, W.4
-
2
-
-
77955555753
-
Degree-associated reconstruction number of graphs
-
M.D. Barrus and D.B. West, Degree-associated reconstruction number of graphs, Discrete Math. 310 (2010), 2600–2612.
-
(2010)
Discrete Math
, vol.310
, pp. 2600-2612
-
-
Barrus, M.D.1
West, D.B.2
-
3
-
-
84971180732
-
On Kelly’s congruence theorem for trees, Proc. Cambridge Philos
-
J.A. Bondy, On Kelly’s congruence theorem for trees, Proc. Cambridge Philos. Soc. 65 (1969), 387–397.
-
(1969)
Soc
, vol.65
, pp. 387-397
-
-
Bondy, J.A.1
-
4
-
-
0039236270
-
On the class-reconstruction number of trees
-
F. Harary and J. Lauri, On the class-reconstruction number of trees, Quart. J. Math. Oxford (2) 39 (1988), 47–60
-
(1988)
Quart. J. Math. Oxford (2)
, vol.39
, pp. 47-60
-
-
Harary, F.1
Lauri, J.2
-
5
-
-
0039089786
-
On similar points of a graph
-
F. Harary and E.M. Palmer, On similar points of a graph, J. Math. Mech. 15 (1966), 623–630.
-
(1966)
J. Math. Mech
, vol.15
, pp. 623-630
-
-
Harary, F.1
Palmer, E.M.2
-
6
-
-
85032070732
-
The graph reconstruction number
-
F. Harary and M. Plantholt, The graph reconstruction number, J. Graph Theory. 9 (1985) 451–454.
-
(1985)
J. Graph Theory
, vol.9
, pp. 451-454
-
-
Harary, F.1
Plantholt, M.2
-
7
-
-
0041014870
-
The reconstruction of a tree from its maximal subtrees, Canad
-
F. Harary and E. Palmer, The reconstruction of a tree from its maximal subtrees, Canad. J. Math. 18 (1966), 803–810.
-
(1966)
J. Math
, vol.18
, pp. 803-810
-
-
Harary, F.1
Palmer, E.2
-
8
-
-
84972518116
-
A congruence theorem for trees, Pacific
-
P.J. Kelly, A congruence theorem for trees, Pacific J. Math. 7 (1957), 961–968.
-
(1957)
J. Math
, vol.7
, pp. 961-968
-
-
Kelly, P.J.1
-
10
-
-
0039236237
-
Interchanging branches and similarity in a tree
-
I. Krasikov, Interchanging branches and similarity in a tree, Graphs Combin. 7 (1991), 165–175.
-
(1991)
Graphs Combin
, vol.7
, pp. 165-175
-
-
Krasikov, I.1
-
11
-
-
33751168359
-
Proof of Harary’s conjecture on the reconstruction of trees
-
J. Lauri, Proof of Harary’s conjecture on the reconstruction of trees, Discrete Math. 43 (1983), 79–90.
-
(1983)
Discrete Math
, vol.43
, pp. 79-90
-
-
Lauri, J.1
-
14
-
-
84923562779
-
The edge reconstruction number of a tree, Vishwa Internat
-
R. Molina, The edge reconstruction number of a tree, Vishwa Internat. J. Graph Theory. 2 (1993), 117–130.
-
(1993)
J. Graph Theory
, vol.2
, pp. 117-130
-
-
Molina, R.1
-
15
-
-
84986520387
-
The ally-reconstruction number of a tree with five or more vertices is three
-
W.J. Myrvold, The ally-reconstruction number of a tree with five or more vertices is three, J. Graph Theory. 14 (1990), 149–166.
-
(1990)
J. Graph Theory
, vol.14
, pp. 149-166
-
-
Myrvold, W.J.1
-
17
-
-
76649127447
-
Reconstructing trees from two cards
-
M. Welhan, Reconstructing trees from two cards, J. Graph Theory. 63 (2010), 243–257.
-
(2010)
J. Graph Theory
, vol.63
, pp. 243-257
-
-
Welhan, M.1
|