-
1
-
-
84885063010
-
Some limit theorems for Hawkes processes and application to financial statistics
-
MR3054533
-
BACRY, E., DELATTRE, S., HOFFMANN, M. and MUZY, J. F. (2013). Some limit theorems for Hawkes processes and application to financial statistics. Stochastic Process. Appl. 123 2475-2499. MR3054533
-
(2013)
Stochastic Process. Appl.
, vol.123
, pp. 2475-2499
-
-
Bacry, E.1
Delattre, S.2
Hoffmann, M.3
Muzy, J.F.4
-
2
-
-
35748939067
-
Large deviations of Poisson cluster processes
-
MR2362700
-
BORDENAVE, C. and TORRISI, G. L. (2007). Large deviations of Poisson cluster processes. Stoch. Models 23 593-625. MR2362700
-
(2007)
Stoch. Models
, vol.23
, pp. 593-625
-
-
Bordenave, C.1
Torrisi, G.L.2
-
3
-
-
0030352915
-
Stability of nonlinear Hawkes processes
-
MR1411506
-
BRÉMAUD, P. and MASSOULIÉ, L. (1996). Stability of nonlinear Hawkes processes. Ann. Probab. 24 1563-1588. MR1411506
-
(1996)
Ann. Probab.
, vol.24
, pp. 1563-1588
-
-
Brémaud, P.1
Massoulié, L.2
-
8
-
-
0040114518
-
A criterion for invariant measures of Markov processes
-
ECHEVERRÍA, P. (1982). A criterion for invariant measures of Markov processes. Probab. Theory Related Fields 61 1-16.
-
(1982)
Probab. Theory Related Fields
, vol.61
, pp. 1-16
-
-
Echeverría, P.1
-
9
-
-
0003139789
-
Minimax theorems
-
MR0055678
-
FAN, K. (1953). Minimax theorems. Proc. Natl. Acad. Sci. USA 39 42-47. MR0055678.
-
(1953)
Proc. Natl. Acad. Sci. USA
, vol.39
, pp. 42-47
-
-
Fan, K.1
-
10
-
-
24844450521
-
The level set method of Joó and its use in minimax theory
-
Econometric Institute, Erasmus Univ., Rotterdam
-
FRENK, J. B. G. and KASSAY, G. (2003). The level set method of Joó and its use in Minimax Theory. Technical Report E.I 2003-03, Econometric Institute, Erasmus Univ., Rotterdam.
-
(2003)
Technical Report E.I
, pp. 2003-2103
-
-
Frenk, J.B.G.1
Kassay, G.2
-
11
-
-
84897053085
-
Convergence of Markov processes
-
Available at
-
HAIRER, M. (2010). Convergence of Markov processes. Lecture Notes. Univ. Warwick. Available at http://www.hairer.org/notes/Convergence.pdf.
-
(2010)
Lecture Notes. Univ. Warwick
-
-
Hairer, M.1
-
12
-
-
0002920214
-
Spectra of some self-exciting and mutually exciting point processes
-
MR0278410
-
HAWKES, A. G. (1971). Spectra of some self-exciting and mutually exciting point processes. Biometrika 58 83-90. MR0278410
-
(1971)
Biometrika
, vol.58
, pp. 83-90
-
-
Hawkes, A.G.1
-
13
-
-
0001446567
-
A cluster process representation of a self-exciting process
-
MR0378093
-
HAWKES, A. G. and OAKES, D. (1974). A cluster process representation of a self-exciting process. J. Appl. Probab. 11 493-503. MR0378093
-
(1974)
J. Appl. Probab.
, vol.11
, pp. 493-503
-
-
Hawkes, A.G.1
Oakes, D.2
-
15
-
-
0011604230
-
Note on my paper: A simple proof for von Neumann's minimax theorem
-
(Szeged) (1980), MR0576940 (81i:49008)]. Acta Math. Hungar. 44, 363-365. MR0764631
-
JOÓ, I. (1984). Note on my paper: "A simple proof for von Neumann's minimax theorem" [Acta Sci. Math. (Szeged) 42 (1980), no. 1-2, 91-94; MR0576940 (81i:49008)]. Acta Math. Hungar. 44 363-365. MR0764631
-
(1984)
Acta Sci. Math.
, vol.42
, Issue.1-2
, pp. 91-94
-
-
Joó, I.1
-
16
-
-
84923455422
-
Limit theorems for marked Hawkes processes with application to a risk model
-
Available at arXiv: 1211.4039
-
KARABASH, D. and ZHU, L. (2012). Limit theorems for marked Hawkes processes with application to a risk model. Preprint. Available at arXiv:1211.4039.
-
(2012)
Preprint
-
-
Karabash, D.1
Zhu, L.2
-
20
-
-
0016486352
-
The Markovian self-exciting process
-
MR0362522
-
OAKES, D. (1975). The Markovian self-exciting process. J. Appl. Probab. 12 69-77. MR0362522
-
(1975)
J. Appl. Probab.
, vol.12
, pp. 69-77
-
-
Oakes, D.1
-
21
-
-
77954427714
-
Risk processes with non-stationary Hawkes claims arrivals
-
MR2665268
-
STABILE, G. and TORRISI, G. L. (2010). Risk processes with non-stationary Hawkes claims arrivals. Methodol. Comput. Appl. Probab. 12 415-429. MR2665268
-
(2010)
Methodol. Comput. Appl. Probab.
, vol.12
, pp. 415-429
-
-
Stabile, G.1
Torrisi, G.L.2
-
22
-
-
0041624901
-
Probability theory
-
Providence, RI. MR1852999
-
VARADHAN, S. R. S. (2001). Probability Theory. Amer. Math. Soc., Providence, RI. MR1852999
-
(2001)
Amer. Math. Soc.
-
-
Varadhan, S.R.S.1
-
23
-
-
51949101236
-
Large deviations
-
MR2393987
-
VARADHAN, S. R. S. (2008). Large deviations. Ann. Probab. 36 397-419. MR2393987
-
(2008)
Ann. Probab.
, vol.36
, pp. 397-419
-
-
Varadhan, S.R.S.1
-
24
-
-
84907740475
-
Limit theorems for a Cox-Ingersoll-Ross process with Hawkes jumps
-
To appear
-
ZHU, L. (2014). Limit theorems for a Cox-Ingersoll-Ross process with Hawkes jumps. J. Appl. Probab. To appear.
-
(2014)
J. Appl. Probab.
-
-
Zhu, L.1
-
25
-
-
84903591613
-
Process-level large deviations for nonlinear Hawkes point processes
-
MR3224291
-
ZHU, L. (2014). Process-level large deviations for nonlinear Hawkes point processes. Ann. Inst. Henri Poincaré Probab. Stat. 50 845-871. MR3224291
-
(2014)
Ann. Inst. Henri Poincaré Probab. Stat.
, vol.50
, pp. 845-871
-
-
Zhu, L.1
-
27
-
-
84883799820
-
Ruin probabilities for risk processes with non-stationary arrivals and subexponential claims
-
MR3130449
-
ZHU, L. (2013). Ruin probabilities for risk processes with non-stationary arrivals and subexponential claims. Insurance Math. Econom. 53 544-550. MR3130449
-
(2013)
Insurance Math. Econom.
, vol.53
, pp. 544-550
-
-
Zhu, L.1
-
28
-
-
84885164766
-
Central limit theorem for nonlinear Hawkes processes
-
MR3102513
-
ZHU, L. (2013). Central limit theorem for nonlinear Hawkes processes. J. Appl. Probab. 50 760-771. MR3102513
-
(2013)
J. Appl. Probab.
, vol.50
, pp. 760-771
-
-
Zhu, L.1
-
29
-
-
84871735616
-
Moderate deviations for Hawkes processes
-
MR3040318
-
ZHU, L. (2013). Moderate deviations for Hawkes processes. Statist. Probab. Lett. 83 885-890. MR3040318
-
(2013)
Statist. Probab. Lett.
, vol.83
, pp. 885-890
-
-
Zhu, L.1
|