메뉴 건너뛰기




Volumn 36, Issue 4, 2015, Pages 1070-1096

Improving hyperspectral image classification by combining spectral, texture, and shape features

Author keywords

[No Author keywords available]

Indexed keywords

CLASSIFICATION (OF INFORMATION); EFFICIENCY; IMAGE CLASSIFICATION; IMAGE TEXTURE; SPECTROSCOPY; SUPPORT VECTOR MACHINES; TELLURIUM COMPOUNDS;

EID: 84923361720     PISSN: 01431161     EISSN: 13665901     Source Type: Journal    
DOI: 10.1080/01431161.2015.1007251     Document Type: Article
Times cited : (119)

References (39)
  • 1
    • 84901375505 scopus 로고    scopus 로고
    • Dynamic Block-Based Parameter Estimation for MRF Classification of High-Resolution Images
    • Aghighi, H., J. Trinder, Y. Tarabalka, and S. Lim. 2014. “Dynamic Block-Based Parameter Estimation for MRF Classification of High-Resolution Images.” IEEEGeoscience and Remote Sensing Letters 11 (10): 1687–1691. doi:10.1109/LGRS.2014.2305913.
    • (2014) IEEEGeoscience and Remote Sensing Letters , vol.11 , Issue.10 , pp. 1687-1691
    • Aghighi, H.1    Trinder, J.2    Tarabalka, Y.3    Lim, S.4
  • 2
    • 14644412366 scopus 로고    scopus 로고
    • Classification of Hyperspectral Data from Urban Areas Based on Extended Morphological Profiles
    • Benediktsson, J. A., J. A. Palmason, and J. R. Sveinsson. 2005. “Classification of Hyperspectral Data from Urban Areas Based on Extended Morphological Profiles.” IEEE Transactions onGeoscience and Remote Sensing 43 (3): 480–491. doi:10.1109/TGRS.2004.842478.
    • (2005) IEEE Transactions onGeoscience and Remote Sensing , vol.43 , Issue.3 , pp. 480-491
    • Benediktsson, J.A.1    Palmason, J.A.2    Sveinsson, J.R.3
  • 5
    • 77957993814 scopus 로고    scopus 로고
    • Spatio-Spectral Remote Sensing Image Classification With Graph Kernels
    • Camps-Valls, G., N. Shervashidze, and K. M. Borgwardt. 2010. “Spatio-Spectral Remote Sensing Image Classification With Graph Kernels.” IEEEGeoscience and Remote Sensing Letters 7 (4): 741–745. doi:10.1109/LGRS.2010.2046618.
    • (2010) IEEEGeoscience and Remote Sensing Letters , vol.7 , Issue.4 , pp. 741-745
    • Camps-Valls, G.1    Shervashidze, N.2    Borgwardt, K.M.3
  • 8
    • 56849127860 scopus 로고    scopus 로고
    • Spectral and Spatial Classification of Hyperspectral Data Using SVMs and Morphological Profiles
    • Fauvel, M., J. A. Benediktsson, J. Chanussot, and J. R. Sveinsson. 2008. “Spectral and Spatial Classification of Hyperspectral Data Using SVMs and Morphological Profiles.” IEEE Transactions onGeoscience and Remote Sensing 46 (11): 3804–3814. doi:10.1109/TGRS.2008.922034.
    • (2008) IEEE Transactions onGeoscience and Remote Sensing , vol.46 , Issue.11 , pp. 3804-3814
    • Fauvel, M.1    Benediktsson, J.A.2    Chanussot, J.3    Sveinsson, J.R.4
  • 9
    • 80052740627 scopus 로고    scopus 로고
    • A Spatial–Spectral Kernel-Based Approach for the Classification of Remote-Sensing Images
    • Fauvel, M., J. Chanussot, and J. A. Benediktsson. 2012. “A Spatial–Spectral Kernel-Based Approach for the Classification of Remote-Sensing Images.” Pattern Recognition 45 (1): 381–392. doi:10.1016/j.patcog.2011.03.035.
    • (2012) Pattern Recognition , vol.45 , Issue.1 , pp. 381-392
    • Fauvel, M.1    Chanussot, J.2    Benediktsson, J.A.3
  • 10
    • 84899967600 scopus 로고    scopus 로고
    • Advances in Spectral-Spatial Classification of Hyperspectral Images
    • Fauvel, M., Y. Tarabalka, J. A. Benediktsson, J. Chanussot, and J. C. Tilton. 2013. “Advances in Spectral-Spatial Classification of Hyperspectral Images.” Proceedings of the IEEE 101 (3): 652–675. doi:10.1109/JPROC.2012.2197589.
    • (2013) Proceedings of the IEEE , vol.101 , Issue.3 , pp. 652-675
    • Fauvel, M.1    Tarabalka, Y.2    Benediktsson, J.A.3    Chanussot, J.4    Tilton, J.C.5
  • 11
    • 3042661357 scopus 로고    scopus 로고
    • Thematic Map Comparison: Evaluating the Statistical Significance of Differences in Classification Accuracy
    • Foody, G. M. 2004. “Thematic Map Comparison: Evaluating the Statistical Significance of Differences in Classification Accuracy.” Photogrammetric Engineering and Remote Sensing 70 (5): 627–633. doi:10.14358/PERS.70.5.627.
    • (2004) Photogrammetric Engineering and Remote Sensing , vol.70 , Issue.5
    • Foody, G.M.1
  • 12
    • 84888263781 scopus 로고    scopus 로고
    • Integration of Segmentation Techniques for Classification of Hyperspectral Images
    • Ghamisi, P., M. S. Couceiro, M. Fauvel, and J. A. Benediktsson. 2014. “Integration of Segmentation Techniques for Classification of Hyperspectral Images.” IEEEGeoscience and Remote Sensing Letters 11 (1): 342–346. doi:10.1109/LGRS.2013.2257675.
    • (2014) IEEEGeoscience and Remote Sensing Letters , vol.11 , Issue.1 , pp. 342-346
    • Ghamisi, P.1    Couceiro, M.S.2    Fauvel, M.3    Benediktsson, J.A.4
  • 14
    • 0024031906 scopus 로고
    • Object-Oriented Feature Extraction Method for Image Data Compaction
    • Ghassemian, H., and D. A. Landgrebe. 1988. “Object-Oriented Feature Extraction Method for Image Data Compaction.” IEEEControl Systems Magazine 8 (3): 42–48. doi:10.1109/37.476.
    • (1988) IEEEControl Systems Magazine , vol.8 , Issue.3 , pp. 42-48
    • Ghassemian, H.1    Landgrebe, D.A.2
  • 15
  • 18
    • 0036875946 scopus 로고    scopus 로고
    • Adaptive Bayesian Contextual Classification Based on Markov Random Fields
    • Jackson, Q., and D. A. Landgrebe. 2002. “Adaptive Bayesian Contextual Classification Based on Markov Random Fields.” IEEE Transactions onGeoscience and Remote Sensing 40 (11): 2454–2463. doi:10.1109/TGRS.2002.805087.
    • (2002) IEEE Transactions onGeoscience and Remote Sensing , vol.40 , Issue.11 , pp. 2454-2463
    • Jackson, Q.1    Landgrebe, D.A.2
  • 19
    • 84870934678 scopus 로고    scopus 로고
    • Linear Feature Extraction for Hyperspectral Images Based on Information Theoretic Learning
    • Kamandar, M., and H. Ghassemian. 2013. “Linear Feature Extraction for Hyperspectral Images Based on Information Theoretic Learning.” IEEEGeoscience and Remote Sensing Letters 10 (4): 702–706. doi:10.1109/LGRS.2012.2219575.
    • (2013) IEEEGeoscience and Remote Sensing Letters , vol.10 , Issue.4 , pp. 702-706
    • Kamandar, M.1    Ghassemian, H.2
  • 20
    • 0016882368 scopus 로고
    • Classification of Multispectral Image Data by Extraction and Classification of Homogeneous Objects
    • Kettig, R. L., and D. A. Landgrebe. 1976. “Classification of Multispectral Image Data by Extraction and Classification of Homogeneous Objects.” IEEE Transactions on Geoscience Electronics 14 (1): 19–26. doi:10.1109/TGE.1976.294460.
    • (1976) IEEE Transactions on Geoscience Electronics , vol.14 , Issue.1 , pp. 19-26
    • Kettig, R.L.1    Landgrebe, D.A.2
  • 22
    • 2642530204 scopus 로고    scopus 로고
    • Nonparametric Weighted Feature Extraction for Classification
    • Kuo, B.-C., and D. A. Landgrebe. 2004. “Nonparametric Weighted Feature Extraction for Classification.” IEEE Transactions onGeoscience and Remote Sensing 42 (5): 1096–1105. doi:10.1109/TGRS.2004.825578.
    • (2004) IEEE Transactions onGeoscience and Remote Sensing , vol.42 , Issue.5 , pp. 1096-1105
    • Kuo, B.-C.1    Landgrebe, D.A.2
  • 23
    • 63149143190 scopus 로고    scopus 로고
    • Kernel Nonparametric Weighted Feature Extraction for Hyperspectral Image Classification
    • Kuo, B.-C., C.-H. Li, and J.-M. Yang. 2009. “Kernel Nonparametric Weighted Feature Extraction for Hyperspectral Image Classification.” IEEE Transactions onGeoscience and Remote Sensing 47 (4): 1139–1155. doi:10.1109/TGRS.2008.2008308.
    • (2009) IEEE Transactions onGeoscience and Remote Sensing , vol.47 , Issue.4 , pp. 1139-1155
    • Kuo, B.-C.1    Li, C.-H.2    Yang, J.-M.3
  • 25
    • 80052099081 scopus 로고    scopus 로고
    • A Spatial–Contextual Support Vector Machine for Remotely Sensed Image Classification
    • Li, C.-H., B.-C. Kuo, C.-T. Lin, and C.-S. Huang. 2012. “A Spatial–Contextual Support Vector Machine for Remotely Sensed Image Classification.” IEEE Transactions onGeoscience and Remote Sensing 50 (3): 784–799. doi:10.1109/TGRS.2011.2162246.
    • (2012) IEEE Transactions onGeoscience and Remote Sensing , vol.50 , Issue.3 , pp. 784-799
    • Li, C.-H.1    Kuo, B.-C.2    Lin, C.-T.3    Huang, C.-S.4
  • 26
    • 84870486411 scopus 로고    scopus 로고
    • Hyperspectral Imagery Clustering With Neighborhood Constraints
    • Li, S., B. Zhang, A. Li, X. Jia, L. Gao, and M. Peng. 2013. “Hyperspectral Imagery Clustering With Neighborhood Constraints.” IEEEGeoscience and Remote Sensing Letters 10 (3): 588–592. doi:10.1109/LGRS.2012.2215005.
    • (2013) IEEEGeoscience and Remote Sensing Letters , vol.10 , Issue.3 , pp. 588-592
    • Li, S.1    Zhang, B.2    Li, A.3    Jia, X.4    Gao, L.5    Peng, M.6
  • 29
    • 84947648698 scopus 로고    scopus 로고
    • Land-Cover Mapping by Markov Modeling of Spatial–Contextual Information in Very-High-Resolution Remote Sensing Images
    • Moser, G., S. B. Serpico, and J. A. Benediktsson. 2013. “Land-Cover Mapping by Markov Modeling of Spatial–Contextual Information in Very-High-Resolution Remote Sensing Images.” Proceedings of the IEEE 101 (3): 631–651. doi:10.1109/JPROC.2012.2211551.
    • (2013) Proceedings of the IEEE , vol.101 , Issue.3 , pp. 631-651
    • Moser, G.1    Serpico, S.B.2    Benediktsson, J.A.3
  • 30
    • 84923351168 scopus 로고    scopus 로고
    • Hyperspectral Images by MultiSpec©
    • Purdue-Research-Foundation. 2014. “Hyperspectral Images by MultiSpec©.” https://engineering.purdue.edu/~biehl/MultiSpec/hyperspectral.html.
    • (2014)
  • 31
    • 84896059238 scopus 로고    scopus 로고
    • Spectral–Spatial Pixel Characterization Using Gabor Filters for Hyperspectral Image Classification
    • Rajadell, O., P. Garcia-Sevilla, and F. Pla. 2013. “Spectral–Spatial Pixel Characterization Using Gabor Filters for Hyperspectral Image Classification.” IEEEGeoscience and Remote Sensing Letters 10 (4): 860–864. doi:10.1109/LGRS.2012.2226426.
    • (2013) IEEEGeoscience and Remote Sensing Letters , vol.10 , Issue.4 , pp. 860-864
    • Rajadell, O.1    Garcia-Sevilla, P.2    Pla, F.3
  • 33
    • 67649190603 scopus 로고    scopus 로고
    • A New Approach for Multi-System/Sensor Decision Fusion Based on Joint Measures
    • Rashidi, A. J., and H. Ghassemian. 2004. “A New Approach for Multi-System/Sensor Decision Fusion Based on Joint Measures.” International Journal of Information Acquisition 1 (2): 109–120. doi:10.1142/S0219878904000148.
    • (2004) International Journal of Information Acquisition , vol.1 , Issue.2 , pp. 109-120
    • Rashidi, A.J.1    Ghassemian, H.2
  • 34
    • 3843116557 scopus 로고    scopus 로고
    • Texture Feature Analysis Using a Gauss-Markov Model in Hyperspectral Image Classification
    • Rellier, G., X. Descombes, F. Falzon, and J. Zerubia. 2004. “Texture Feature Analysis Using a Gauss-Markov Model in Hyperspectral Image Classification.” IEEE Transactions onGeoscience and Remote Sensing 42 (7): 1543–1551. doi:10.1109/TGRS.2004.830170.
    • (2004) IEEE Transactions onGeoscience and Remote Sensing , vol.42 , Issue.7 , pp. 1543-1551
    • Rellier, G.1    Descombes, X.2    Falzon, F.3    Zerubia, J.4
  • 36
    • 85056354006 scopus 로고    scopus 로고
    • Data Fusion for Remote Sensing Applications
    • Chen C., (ed), Boca Raton, FL: CRC Press
    • Solberg, A. H. S. 2006. “Data Fusion for Remote Sensing Applications.” In Signal and Image Processing for Remote Sensing, edited by C. Chen, 515–537. Boca Raton, FL: CRC Press. doi:10.1201/9781420003130.ch23.
    • (2006) Signal and Image Processing for Remote Sensing , pp. 515-537
    • Solberg, A.H.S.1
  • 37
    • 67949115614 scopus 로고    scopus 로고
    • Spectral–Spatial Classification of Hyperspectral Imagery Based on Partitional Clustering Techniques
    • Tarabalka, Y., J. A. Benediktsson, and J. Chanussot. 2009. “Spectral–Spatial Classification of Hyperspectral Imagery Based on Partitional Clustering Techniques.” IEEE Transactions onGeoscience and Remote Sensing 47 (8): 2973–2987. doi:10.1109/TGRS.2009.2016214.
    • (2009) IEEE Transactions onGeoscience and Remote Sensing , vol.47 , Issue.8 , pp. 2973-2987
    • Tarabalka, Y.1    Benediktsson, J.A.2    Chanussot, J.3
  • 39
    • 84904562088 scopus 로고    scopus 로고
    • Hyperspectral Remote Sensing Scenes
    • Universidad-del-País-Vasco. 2014. “Hyperspectral Remote Sensing Scenes.” http://www.ehu.es/ccwintco/index.php?title=Hyperspectral_Remote_Sensing_Scenes.
    • (2014)


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.