메뉴 건너뛰기




Volumn 31, Issue 3, 2015, Pages 164-173

Building bridges within the bacterial chromosome

Author keywords

Chromosome organization; DNA bridging; Nucleoid associated protein; Single molecule; Structural maintenance of chromosomes

Indexed keywords

HISTONE LIKE NUCLEOID STRUCTURING PROTEIN; BACTERIAL DNA; BACTERIAL PROTEIN; DNA BINDING PROTEIN;

EID: 84923334989     PISSN: 01689525     EISSN: 13624555     Source Type: Journal    
DOI: 10.1016/j.tig.2015.01.003     Document Type: Review
Times cited : (56)

References (111)
  • 1
    • 3142774839 scopus 로고    scopus 로고
    • Topological domain structure of the Escherichia coli chromosome
    • Postow L., et al. Topological domain structure of the Escherichia coli chromosome. Genes Dev. 2004, 18:1766-1779.
    • (2004) Genes Dev. , vol.18 , pp. 1766-1779
    • Postow, L.1
  • 2
    • 0034650256 scopus 로고    scopus 로고
    • Dynamic organization of chromosomal DNA in Escherichia coli
    • Niki H., et al. Dynamic organization of chromosomal DNA in Escherichia coli. Genes Dev. 2000, 14:212-223.
    • (2000) Genes Dev. , vol.14 , pp. 212-223
    • Niki, H.1
  • 3
    • 9144264275 scopus 로고    scopus 로고
    • Macrodomain organization of the Escherichia coli chromosome
    • Valens M., et al. Macrodomain organization of the Escherichia coli chromosome. EMBO J. 2004, 23:4330-4341.
    • (2004) EMBO J. , vol.23 , pp. 4330-4341
    • Valens, M.1
  • 4
  • 5
    • 76949089832 scopus 로고    scopus 로고
    • Bacterial nucleoid-associated proteins, nucleoid structure and gene expression
    • Dillon S.C., Dorman C.J. Bacterial nucleoid-associated proteins, nucleoid structure and gene expression. Nat. Rev. Microbiol. 2010, 8:185-195.
    • (2010) Nat. Rev. Microbiol. , vol.8 , pp. 185-195
    • Dillon, S.C.1    Dorman, C.J.2
  • 6
    • 57749209893 scopus 로고    scopus 로고
    • The major architects of chromatin: architectural proteins in bacteria, Archaea and eukaryotes
    • Luijsterburg M.S., et al. The major architects of chromatin: architectural proteins in bacteria, Archaea and eukaryotes. Crit. Rev. Biochem. Mol. Biol. 2008, 43:393-418.
    • (2008) Crit. Rev. Biochem. Mol. Biol. , vol.43 , pp. 393-418
    • Luijsterburg, M.S.1
  • 7
    • 18444369954 scopus 로고    scopus 로고
    • The role of nucleoid-associated proteins in the organization and compaction of bacterial chromatin
    • Dame R.T. The role of nucleoid-associated proteins in the organization and compaction of bacterial chromatin. Mol. Microbiol. 2005, 56:858-870.
    • (2005) Mol. Microbiol. , vol.56 , pp. 858-870
    • Dame, R.T.1
  • 8
    • 2442560235 scopus 로고    scopus 로고
    • H-NS: a universal regulator for a dynamic genome
    • Dorman C.J. H-NS: a universal regulator for a dynamic genome. Nat. Rev. Microbiol. 2004, 2:391-400.
    • (2004) Nat. Rev. Microbiol. , vol.2 , pp. 391-400
    • Dorman, C.J.1
  • 9
    • 0035083490 scopus 로고    scopus 로고
    • Structural basis for preferential binding of H-NS to curved DNA
    • Dame R.T., et al. Structural basis for preferential binding of H-NS to curved DNA. Biochimie 2001, 83:231-234.
    • (2001) Biochimie , vol.83 , pp. 231-234
    • Dame, R.T.1
  • 10
    • 0035725521 scopus 로고    scopus 로고
    • A molecular mechanism for the repression of transcription by the H-NS protein
    • Rimsky S., et al. A molecular mechanism for the repression of transcription by the H-NS protein. Mol. Microbiol. 2001, 42:1311-1323.
    • (2001) Mol. Microbiol. , vol.42 , pp. 1311-1323
    • Rimsky, S.1
  • 11
    • 0025003429 scopus 로고
    • An Escherichia coli protein that preferentially binds to sharply curved DNA
    • Yamada H., et al. An Escherichia coli protein that preferentially binds to sharply curved DNA. J. Biochem. 1990, 108:420-425.
    • (1990) J. Biochem. , vol.108 , pp. 420-425
    • Yamada, H.1
  • 12
    • 0029018797 scopus 로고
    • Role for the histone-like protein H-NS in growth phase-dependent and osmotic regulation of sigma S and many sigma S-dependent genes in Escherichia coli
    • Barth M., et al. Role for the histone-like protein H-NS in growth phase-dependent and osmotic regulation of sigma S and many sigma S-dependent genes in Escherichia coli. J. Bacteriol. 1995, 177:3455-3464.
    • (1995) J. Bacteriol. , vol.177 , pp. 3455-3464
    • Barth, M.1
  • 13
    • 0027979044 scopus 로고
    • The H-NS protein is involved in the biogenesis of flagella in Escherichia coli
    • Bertin P., et al. The H-NS protein is involved in the biogenesis of flagella in Escherichia coli. J. Bacteriol. 1994, 176:5537-5540.
    • (1994) J. Bacteriol. , vol.176 , pp. 5537-5540
    • Bertin, P.1
  • 14
    • 0027500211 scopus 로고
    • Autoregulatory expression of the Escherichia coli hns gene encoding a nucleoid protein: H-NS functions as a repressor of its own transcription
    • Ueguchi C., et al. Autoregulatory expression of the Escherichia coli hns gene encoding a nucleoid protein: H-NS functions as a repressor of its own transcription. Mol. Gen. Genet. 1993, 236:171-178.
    • (1993) Mol. Gen. Genet. , vol.236 , pp. 171-178
    • Ueguchi, C.1
  • 15
    • 0028306747 scopus 로고
    • Evidence for a regulatory function of the histone-like Escherichia coli protein H-NS in ribosomal RNA synthesis
    • Tippner D., et al. Evidence for a regulatory function of the histone-like Escherichia coli protein H-NS in ribosomal RNA synthesis. Mol. Microbiol. 1994, 11:589-604.
    • (1994) Mol. Microbiol. , vol.11 , pp. 589-604
    • Tippner, D.1
  • 16
    • 0028285269 scopus 로고
    • Interactions of the nucleoid-associated DNA-binding protein H-NS with the regulatory region of the osmotically controlled proU operon of Escherichia coli
    • Lucht J.M., et al. Interactions of the nucleoid-associated DNA-binding protein H-NS with the regulatory region of the osmotically controlled proU operon of Escherichia coli. J. Biol. Chem. 1994, 269:6578.
    • (1994) J. Biol. Chem. , vol.269 , pp. 6578
    • Lucht, J.M.1
  • 17
    • 33846465923 scopus 로고    scopus 로고
    • H-NS, the genome sentinel
    • Dorman C.J. H-NS, the genome sentinel. Nat. Rev. Microbiol. 2007, 5:157-161.
    • (2007) Nat. Rev. Microbiol. , vol.5 , pp. 157-161
    • Dorman, C.J.1
  • 18
    • 33746629034 scopus 로고    scopus 로고
    • Role of histone-like proteins H-NS and StpA in expression of virulence determinants of uropathogenic Escherichia coli
    • Muller C.M., et al. Role of histone-like proteins H-NS and StpA in expression of virulence determinants of uropathogenic Escherichia coli. J. Bacteriol. 2006, 188:5428-5438.
    • (2006) J. Bacteriol. , vol.188 , pp. 5428-5438
    • Muller, C.M.1
  • 19
    • 0027408394 scopus 로고
    • The Escherichia coli nucleoid protein H-NS functions directly as a transcriptional repressor
    • Ueguchi C., Mizuno T. The Escherichia coli nucleoid protein H-NS functions directly as a transcriptional repressor. EMBO J. 1993, 12:1039-1046.
    • (1993) EMBO J. , vol.12 , pp. 1039-1046
    • Ueguchi, C.1    Mizuno, T.2
  • 20
    • 0028085068 scopus 로고
    • The chromatin-associated protein H-NS alters DNA topology in vitro
    • Tupper A.E., et al. The chromatin-associated protein H-NS alters DNA topology in vitro. EMBO J. 1994, 13:258-268.
    • (1994) EMBO J. , vol.13 , pp. 258-268
    • Tupper, A.E.1
  • 21
    • 0021760528 scopus 로고
    • H1a, an E. coli DNA-binding protein which accumulates in stationary phase, strongly compacts DNA in vitro
    • Spassky A., et al. H1a, an E. coli DNA-binding protein which accumulates in stationary phase, strongly compacts DNA in vitro. Nucleic Acids Res. 1984, 12:5321-5340.
    • (1984) Nucleic Acids Res. , vol.12 , pp. 5321-5340
    • Spassky, A.1
  • 22
    • 0026573628 scopus 로고
    • Lethal overproduction of the Escherichia coli nucleoid protein H-NS: ultramicroscopic and molecular autopsy
    • Spurio R., et al. Lethal overproduction of the Escherichia coli nucleoid protein H-NS: ultramicroscopic and molecular autopsy. Mol. Gen. Genet. 1992, 231:201-211.
    • (1992) Mol. Gen. Genet. , vol.231 , pp. 201-211
    • Spurio, R.1
  • 23
    • 0034666271 scopus 로고    scopus 로고
    • H-NS mediated compaction of DNA visualised by atomic force microscopy
    • Dame R.T., et al. H-NS mediated compaction of DNA visualised by atomic force microscopy. Nucleic Acids Res. 2000, 28:3504-3510.
    • (2000) Nucleic Acids Res. , vol.28 , pp. 3504-3510
    • Dame, R.T.1
  • 24
    • 76749118994 scopus 로고    scopus 로고
    • A divalent switch drives H-NS/DNA-binding conformations between stiffening and bridging modes
    • Liu Y., et al. A divalent switch drives H-NS/DNA-binding conformations between stiffening and bridging modes. Genes Dev. 2010, 24:339-344.
    • (2010) Genes Dev. , vol.24 , pp. 339-344
    • Liu, Y.1
  • 25
    • 0037127209 scopus 로고    scopus 로고
    • Structural basis for H-NS-mediated trapping of RNA polymerase in the open initiation complex at the rrnB P1
    • Dame R.T., et al. Structural basis for H-NS-mediated trapping of RNA polymerase in the open initiation complex at the rrnB P1. J. Biol. Chem. 2002, 277:2146-2150.
    • (2002) J. Biol. Chem. , vol.277 , pp. 2146-2150
    • Dame, R.T.1
  • 26
    • 0034685608 scopus 로고    scopus 로고
    • The bacterial DNA-binding protein H-NS represses ribosomal RNA transcription by trapping RNA polymerase in the initiation complex
    • Schroder O., Wagner R. The bacterial DNA-binding protein H-NS represses ribosomal RNA transcription by trapping RNA polymerase in the initiation complex. J. Mol. Biol. 2000, 298:737-748.
    • (2000) J. Mol. Biol. , vol.298 , pp. 737-748
    • Schroder, O.1    Wagner, R.2
  • 27
    • 1842453825 scopus 로고    scopus 로고
    • Structure of the histone-like protein H-NS and its role in regulation and genome superstructure
    • Rimsky S. Structure of the histone-like protein H-NS and its role in regulation and genome superstructure. Curr. Opin. Microbiol. 2004, 7:109-114.
    • (2004) Curr. Opin. Microbiol. , vol.7 , pp. 109-114
    • Rimsky, S.1
  • 28
    • 0028900971 scopus 로고
    • Solution structure of the DNA binding domain of a nucleoid-associated protein, H-NS, from Escherichia coli
    • Shindo H., et al. Solution structure of the DNA binding domain of a nucleoid-associated protein, H-NS, from Escherichia coli. FEBS Lett. 1995, 360:125-131.
    • (1995) FEBS Lett. , vol.360 , pp. 125-131
    • Shindo, H.1
  • 29
    • 77957683898 scopus 로고    scopus 로고
    • H-NS forms a superhelical protein scaffold for DNA condensation
    • Arold S.T., et al. H-NS forms a superhelical protein scaffold for DNA condensation. Proc. Natl. Acad. Sci. U.S.A. 2010, 107:15728-15732.
    • (2010) Proc. Natl. Acad. Sci. U.S.A. , vol.107 , pp. 15728-15732
    • Arold, S.T.1
  • 30
    • 0037336248 scopus 로고    scopus 로고
    • The H-NS dimerization domain defines a new fold contributing to DNA recognition
    • Bloch V., et al. The H-NS dimerization domain defines a new fold contributing to DNA recognition. Nat. Struct. Biol. 2003, 10:212-218.
    • (2003) Nat. Struct. Biol. , vol.10 , pp. 212-218
    • Bloch, V.1
  • 31
    • 0242289355 scopus 로고    scopus 로고
    • Crystal structure of the N-terminal dimerisation domain of VicH, the H-NS-like protein of Vibrio cholerae
    • Cerdan R., et al. Crystal structure of the N-terminal dimerisation domain of VicH, the H-NS-like protein of Vibrio cholerae. J. Mol. Biol. 2003, 334:179-185.
    • (2003) J. Mol. Biol. , vol.334 , pp. 179-185
    • Cerdan, R.1
  • 32
    • 33751098486 scopus 로고    scopus 로고
    • Bacterial chromatin organization by H-NS protein unravelled using dual DNA manipulation
    • Dame R.T., et al. Bacterial chromatin organization by H-NS protein unravelled using dual DNA manipulation. Nature 2006, 444:387-390.
    • (2006) Nature , vol.444 , pp. 387-390
    • Dame, R.T.1
  • 33
    • 0037381991 scopus 로고    scopus 로고
    • Increased bending rigidity of single DNA molecules by H-NS, a temperature and osmolarity sensor
    • Amit R., et al. Increased bending rigidity of single DNA molecules by H-NS, a temperature and osmolarity sensor. Biophys. J. 2003, 84:2467-2473.
    • (2003) Biophys. J. , vol.84 , pp. 2467-2473
    • Amit, R.1
  • 34
    • 84905581331 scopus 로고    scopus 로고
    • Single-molecule studies on the mechanical interplay between DNA supercoiling and H-NS DNA architectural properties
    • Lim C.J., et al. Single-molecule studies on the mechanical interplay between DNA supercoiling and H-NS DNA architectural properties. Nucleic Acids Res. 2014, 42:8369-8378.
    • (2014) Nucleic Acids Res. , vol.42 , pp. 8369-8378
    • Lim, C.J.1
  • 35
    • 84864150307 scopus 로고    scopus 로고
    • Nucleoprotein filament formation is the structural basis for bacterial protein H-NS gene silencing
    • Lim C.J., et al. Nucleoprotein filament formation is the structural basis for bacterial protein H-NS gene silencing. Sci. Rep. 2012, 2:509.
    • (2012) Sci. Rep. , vol.2 , pp. 509
    • Lim, C.J.1
  • 36
    • 0030972952 scopus 로고    scopus 로고
    • H-NS: a modulator of environmentally regulated gene expression
    • Atlung T., Ingmer H. H-NS: a modulator of environmentally regulated gene expression. Mol. Microbiol. 1997, 24:7-17.
    • (1997) Mol. Microbiol. , vol.24 , pp. 7-17
    • Atlung, T.1    Ingmer, H.2
  • 37
    • 27444441689 scopus 로고    scopus 로고
    • H-NS is a part of a thermally controlled mechanism for bacterial gene regulation
    • Ono S., et al. H-NS is a part of a thermally controlled mechanism for bacterial gene regulation. Biochem. J. 2005, 391:203-213.
    • (2005) Biochem. J. , vol.391 , pp. 203-213
    • Ono, S.1
  • 38
    • 80052643394 scopus 로고    scopus 로고
    • Chromosome organization by a nucleoid-associated protein in live bacteria
    • Wang W., et al. Chromosome organization by a nucleoid-associated protein in live bacteria. Science 2011, 333:1445-1449.
    • (2011) Science , vol.333 , pp. 1445-1449
    • Wang, W.1
  • 39
    • 84902172298 scopus 로고    scopus 로고
    • Characterization and development of photoactivatable fluorescent proteins for single-molecule-based superresolution imaging
    • Wang S., et al. Characterization and development of photoactivatable fluorescent proteins for single-molecule-based superresolution imaging. Proc. Natl. Acad. Sci. U.S.A. 2014, 111:8452-8457.
    • (2014) Proc. Natl. Acad. Sci. U.S.A. , vol.111 , pp. 8452-8457
    • Wang, S.1
  • 40
    • 84880242640 scopus 로고    scopus 로고
    • Genome conformation capture reveals that the Escherichia coli chromosome is organized by replication and transcription
    • Cagliero C., et al. Genome conformation capture reveals that the Escherichia coli chromosome is organized by replication and transcription. Nucleic Acids Res. 2013, 41:6058-6071.
    • (2013) Nucleic Acids Res. , vol.41 , pp. 6058-6071
    • Cagliero, C.1
  • 41
    • 84892725835 scopus 로고    scopus 로고
    • Defining the role of ATP hydrolysis in mitotic segregation of bacterial plasmids
    • Ah-Seng Y., et al. Defining the role of ATP hydrolysis in mitotic segregation of bacterial plasmids. PLoS Genet. 2013, 9:e1003956.
    • (2013) PLoS Genet. , vol.9 , pp. e1003956
    • Ah-Seng, Y.1
  • 42
    • 33846919050 scopus 로고    scopus 로고
    • The tail of the ParG DNA segregation protein remodels ParF polymers and enhances ATP hydrolysis via an arginine finger-like motif
    • Barilla D., et al. The tail of the ParG DNA segregation protein remodels ParF polymers and enhances ATP hydrolysis via an arginine finger-like motif. Proc. Natl. Acad. Sci. U.S.A. 2007, 104:1811-1816.
    • (2007) Proc. Natl. Acad. Sci. U.S.A. , vol.104 , pp. 1811-1816
    • Barilla, D.1
  • 43
    • 0026585678 scopus 로고
    • Biochemical activities of the parA partition protein of the P1 plasmid
    • Davis M.A., et al. Biochemical activities of the parA partition protein of the P1 plasmid. Mol. Microbiol. 1992, 6:1141-1147.
    • (1992) Mol. Microbiol. , vol.6 , pp. 1141-1147
    • Davis, M.A.1
  • 44
    • 0036670336 scopus 로고    scopus 로고
    • ParB-stimulated nucleotide exchange regulates a switch in functionally distinct ParA activities
    • Easter J., Gober J.W. ParB-stimulated nucleotide exchange regulates a switch in functionally distinct ParA activities. Mol. Cell 2002, 10:427-434.
    • (2002) Mol. Cell , vol.10 , pp. 427-434
    • Easter, J.1    Gober, J.W.2
  • 45
    • 79551683984 scopus 로고    scopus 로고
    • Spo0J regulates the oligomeric state of Soj to trigger its switch from an activator to an inhibitor of DNA replication initiation
    • Scholefield G., et al. Spo0J regulates the oligomeric state of Soj to trigger its switch from an activator to an inhibitor of DNA replication initiation. Mol. Microbiol. 2011, 79:1089-1100.
    • (2011) Mol. Microbiol. , vol.79 , pp. 1089-1100
    • Scholefield, G.1
  • 46
    • 73349101910 scopus 로고    scopus 로고
    • Movement and equipositioning of plasmids by ParA filament disassembly
    • Ringgaard S., et al. Movement and equipositioning of plasmids by ParA filament disassembly. Proc. Natl. Acad. Sci. U.S.A. 2009, 106:19369-19374.
    • (2009) Proc. Natl. Acad. Sci. U.S.A. , vol.106 , pp. 19369-19374
    • Ringgaard, S.1
  • 47
    • 84877631843 scopus 로고    scopus 로고
    • ParA-mediated plasmid partition driven by protein pattern self-organization
    • Hwang L.C., et al. ParA-mediated plasmid partition driven by protein pattern self-organization. EMBO J. 2013, 32:1238-1249.
    • (2013) EMBO J. , vol.32 , pp. 1238-1249
    • Hwang, L.C.1
  • 48
    • 84897486085 scopus 로고    scopus 로고
    • A propagating ATPase gradient drives transport of surface-confined cellular cargo
    • Vecchiarelli A.G., et al. A propagating ATPase gradient drives transport of surface-confined cellular cargo. Proc. Natl. Acad. Sci. U.S.A. 2014, 111:4880-4885.
    • (2014) Proc. Natl. Acad. Sci. U.S.A. , vol.111 , pp. 4880-4885
    • Vecchiarelli, A.G.1
  • 49
    • 84876063388 scopus 로고    scopus 로고
    • Cell-free study of F plasmid partition provides evidence for cargo transport by a diffusion-ratchet mechanism
    • Vecchiarelli A.G., et al. Cell-free study of F plasmid partition provides evidence for cargo transport by a diffusion-ratchet mechanism. Proc. Natl. Acad. Sci. U.S.A. 2013, 110:E1390-E1397.
    • (2013) Proc. Natl. Acad. Sci. U.S.A. , vol.110 , pp. E1390-E1397
    • Vecchiarelli, A.G.1
  • 50
    • 84868026951 scopus 로고    scopus 로고
    • Surfing biological surfaces: exploiting the nucleoid for partition and transport in bacteria
    • Vecchiarelli A.G., et al. Surfing biological surfaces: exploiting the nucleoid for partition and transport in bacteria. Mol. Microbiol. 2012, 86:513-523.
    • (2012) Mol. Microbiol. , vol.86 , pp. 513-523
    • Vecchiarelli, A.G.1
  • 51
    • 33845460999 scopus 로고    scopus 로고
    • A dynamic, mitotic-like mechanism for bacterial chromosome segregation
    • Fogel M.A., Waldor M.K. A dynamic, mitotic-like mechanism for bacterial chromosome segregation. Genes Dev. 2006, 20:3269-3282.
    • (2006) Genes Dev. , vol.20 , pp. 3269-3282
    • Fogel, M.A.1    Waldor, M.K.2
  • 52
    • 77955175864 scopus 로고    scopus 로고
    • A spindle-like apparatus guides bacterial chromosome segregation
    • Ptacin J.L., et al. A spindle-like apparatus guides bacterial chromosome segregation. Nat. Cell Biol. 2010, 12:791-798.
    • (2010) Nat. Cell Biol. , vol.12 , pp. 791-798
    • Ptacin, J.L.1
  • 53
    • 84902324665 scopus 로고    scopus 로고
    • Evidence for a DNA-relay mechanism in ParABS-mediated chromosome segregation
    • Lim H.C., et al. Evidence for a DNA-relay mechanism in ParABS-mediated chromosome segregation. Elife 2014, 3:e02758.
    • (2014) Elife , vol.3 , pp. e02758
    • Lim, H.C.1
  • 54
    • 81255146230 scopus 로고    scopus 로고
    • The three-dimensional architecture of a bacterial genome and its alteration by genetic perturbation
    • Umbarger M.A., et al. The three-dimensional architecture of a bacterial genome and its alteration by genetic perturbation. Mol. Cell 2011, 44:252-264.
    • (2011) Mol. Cell , vol.44 , pp. 252-264
    • Umbarger, M.A.1
  • 55
    • 33646401543 scopus 로고    scopus 로고
    • The chromosome partitioning proteins Soj (ParA) and Spo0J (ParB) contribute to accurate chromosome partitioning, separation of replicated sister origins, and regulation of replication initiation in Bacillus subtilis
    • Lee P.S., Grossman A.D. The chromosome partitioning proteins Soj (ParA) and Spo0J (ParB) contribute to accurate chromosome partitioning, separation of replicated sister origins, and regulation of replication initiation in Bacillus subtilis. Mol. Microbiol. 2006, 60:853-869.
    • (2006) Mol. Microbiol. , vol.60 , pp. 853-869
    • Lee, P.S.1    Grossman, A.D.2
  • 56
    • 84895067831 scopus 로고    scopus 로고
    • The SMC condensin complex is required for origin segregation in Bacillus subtilis
    • Wang X., et al. The SMC condensin complex is required for origin segregation in Bacillus subtilis. Curr. Biol. 2014, 24:287-292.
    • (2014) Curr. Biol. , vol.24 , pp. 287-292
    • Wang, X.1
  • 57
    • 18844377820 scopus 로고    scopus 로고
    • Flexibility in repression and cooperativity by KorB of broad host range IncP-1 plasmid RK2
    • Bingle L.E., et al. Flexibility in repression and cooperativity by KorB of broad host range IncP-1 plasmid RK2. J. Mol. Biol. 2005, 349:302-316.
    • (2005) J. Mol. Biol. , vol.349 , pp. 302-316
    • Bingle, L.E.1
  • 58
    • 0028960197 scopus 로고
    • SopB protein-mediated silencing of genes linked to the sopC locus of Escherichia coli F plasmid
    • Lynch A.S., Wang J.C. SopB protein-mediated silencing of genes linked to the sopC locus of Escherichia coli F plasmid. Proc. Natl. Acad. Sci. U.S.A. 1995, 92:1896-1900.
    • (1995) Proc. Natl. Acad. Sci. U.S.A. , vol.92 , pp. 1896-1900
    • Lynch, A.S.1    Wang, J.C.2
  • 59
    • 0033593587 scopus 로고    scopus 로고
    • Silencing of genes flanking the P1 plasmid centromere
    • Rodionov O., et al. Silencing of genes flanking the P1 plasmid centromere. Science 1999, 283:546-549.
    • (1999) Science , vol.283 , pp. 546-549
    • Rodionov, O.1
  • 60
    • 84903975412 scopus 로고    scopus 로고
    • Chromosome segregation proteins of Vibrio cholerae as transcription regulators
    • Baek J.H., et al. Chromosome segregation proteins of Vibrio cholerae as transcription regulators. MBio 2014, 5:e01061-e1114.
    • (2014) MBio , vol.5 , pp. e01061-e1114
    • Baek, J.H.1
  • 61
    • 4944234921 scopus 로고    scopus 로고
    • ParB of Pseudomonas aeruginosa: interactions with its partner ParA and its target parS and specific effects on bacterial growth
    • Bartosik A.A., et al. ParB of Pseudomonas aeruginosa: interactions with its partner ParA and its target parS and specific effects on bacterial growth. J. Bacteriol. 2004, 186:6983-6998.
    • (2004) J. Bacteriol. , vol.186 , pp. 6983-6998
    • Bartosik, A.A.1
  • 62
    • 34247497733 scopus 로고    scopus 로고
    • Whole-genome analysis of the chromosome partitioning and sporulation protein Spo0J (ParB) reveals spreading and origin-distal sites on the Bacillus subtilis chromosome
    • Breier A.M., Grossman A.D. Whole-genome analysis of the chromosome partitioning and sporulation protein Spo0J (ParB) reveals spreading and origin-distal sites on the Bacillus subtilis chromosome. Mol. Microbiol. 2007, 64:703-718.
    • (2007) Mol. Microbiol. , vol.64 , pp. 703-718
    • Breier, A.M.1    Grossman, A.D.2
  • 63
    • 33747067108 scopus 로고    scopus 로고
    • The bacterial chromosome segregation protein Spo0J spreads along DNA from parS nucleation sites
    • Murray H., et al. The bacterial chromosome segregation protein Spo0J spreads along DNA from parS nucleation sites. Mol. Microbiol. 2006, 61:1352-1361.
    • (2006) Mol. Microbiol. , vol.61 , pp. 1352-1361
    • Murray, H.1
  • 64
    • 84901761890 scopus 로고    scopus 로고
    • ParB spreading requires DNA bridging
    • Graham T.G., et al. ParB spreading requires DNA bridging. Genes Dev. 2014, 28:1228-1238.
    • (2014) Genes Dev. , vol.28 , pp. 1228-1238
    • Graham, T.G.1
  • 66
    • 84941094741 scopus 로고    scopus 로고
    • Specific and non-specific interactions of ParB with DNA: implications for chromosome segregation
    • Published online January 8, 2015
    • Taylor J.A., et al. Specific and non-specific interactions of ParB with DNA: implications for chromosome segregation. Nucleic Acids Res. 2015, Published online January 8, 2015, http://dx.doi.org/10.1093/nar/gku1295.
    • (2015) Nucleic Acids Res.
    • Taylor, J.A.1
  • 67
    • 33846924831 scopus 로고    scopus 로고
    • Structural biology of plasmid segregation proteins
    • Schumacher M.A. Structural biology of plasmid segregation proteins. Curr. Opin. Struct. Biol. 2007, 17:103-109.
    • (2007) Curr. Opin. Struct. Biol. , vol.17 , pp. 103-109
    • Schumacher, M.A.1
  • 68
    • 0034882694 scopus 로고    scopus 로고
    • Genetic analysis of the chromosome segregation protein Spo0J of Bacillus subtilis: evidence for separate domains involved in DNA binding and interactions with Soj protein
    • Autret S., et al. Genetic analysis of the chromosome segregation protein Spo0J of Bacillus subtilis: evidence for separate domains involved in DNA binding and interactions with Soj protein. Mol. Microbiol. 2001, 41:743-755.
    • (2001) Mol. Microbiol. , vol.41 , pp. 743-755
    • Autret, S.1
  • 69
    • 65549135760 scopus 로고    scopus 로고
    • Recruitment of condensin to replication origin regions by ParB/SpoOJ promotes chromosome segregation in B. subtilis
    • Gruber S., Errington J. Recruitment of condensin to replication origin regions by ParB/SpoOJ promotes chromosome segregation in B. subtilis. Cell 2009, 137:685-696.
    • (2009) Cell , vol.137 , pp. 685-696
    • Gruber, S.1    Errington, J.2
  • 70
    • 65549149524 scopus 로고    scopus 로고
    • Recruitment of SMC by ParB-parS organizes the origin region and promotes efficient chromosome segregation
    • Sullivan N.L., et al. Recruitment of SMC by ParB-parS organizes the origin region and promotes efficient chromosome segregation. Cell 2009, 137:697-707.
    • (2009) Cell , vol.137 , pp. 697-707
    • Sullivan, N.L.1
  • 71
    • 84901807860 scopus 로고    scopus 로고
    • How to build segregation complexes in bacteria: use bridges
    • Funnell B.E. How to build segregation complexes in bacteria: use bridges. Genes Dev. 2014, 28:1140-1142.
    • (2014) Genes Dev. , vol.28 , pp. 1140-1142
    • Funnell, B.E.1
  • 72
    • 84902602974 scopus 로고    scopus 로고
    • Condensation and localization of the partitioning protein ParB on the bacterial chromosome
    • Broedersz C.P., et al. Condensation and localization of the partitioning protein ParB on the bacterial chromosome. Proc. Natl. Acad. Sci. U.S.A. 2014, 111:8809-8814.
    • (2014) Proc. Natl. Acad. Sci. U.S.A. , vol.111 , pp. 8809-8814
    • Broedersz, C.P.1
  • 73
    • 33646177549 scopus 로고    scopus 로고
    • At the heart of the chromosome: SMC proteins in action
    • Hirano T. At the heart of the chromosome: SMC proteins in action. Nat. Rev. Mol. Cell Biol. 2006, 7:311-322.
    • (2006) Nat. Rev. Mol. Cell Biol. , vol.7 , pp. 311-322
    • Hirano, T.1
  • 74
    • 63049099775 scopus 로고    scopus 로고
    • RAD50, an SMC family member with multiple roles in DNA break repair: how does ATP affect function?
    • Kinoshita E., et al. RAD50, an SMC family member with multiple roles in DNA break repair: how does ATP affect function?. Chromosome Res. 2009, 17:277-288.
    • (2009) Chromosome Res. , vol.17 , pp. 277-288
    • Kinoshita, E.1
  • 75
    • 63049084910 scopus 로고    scopus 로고
    • Dynamics of the bacterial SMC complex and SMC-like proteins involved in DNA repair
    • Graumann P.L., Knust T. Dynamics of the bacterial SMC complex and SMC-like proteins involved in DNA repair. Chromosome Res. 2009, 17:265-275.
    • (2009) Chromosome Res. , vol.17 , pp. 265-275
    • Graumann, P.L.1    Knust, T.2
  • 76
    • 34548348945 scopus 로고    scopus 로고
    • MukB colocalizes with the oriC region and is required for organization of the two Escherichia coli chromosome arms into separate cell halves
    • Danilova O., et al. MukB colocalizes with the oriC region and is required for organization of the two Escherichia coli chromosome arms into separate cell halves. Mol. Microbiol. 2007, 65:1485-1492.
    • (2007) Mol. Microbiol. , vol.65 , pp. 1485-1492
    • Danilova, O.1
  • 77
    • 79960708973 scopus 로고    scopus 로고
    • SMC is recruited to oriC by ParB and promotes chromosome segregation in Streptococcus pneumoniae
    • Minnen A., et al. SMC is recruited to oriC by ParB and promotes chromosome segregation in Streptococcus pneumoniae. Mol. Microbiol. 2011, 81:676-688.
    • (2011) Mol. Microbiol. , vol.81 , pp. 676-688
    • Minnen, A.1
  • 78
    • 84887322004 scopus 로고    scopus 로고
    • High-resolution mapping of the spatial organization of a bacterial chromosome
    • Le T.B., et al. High-resolution mapping of the spatial organization of a bacterial chromosome. Science 2013, 342:731-734.
    • (2013) Science , vol.342 , pp. 731-734
    • Le, T.B.1
  • 79
    • 84875165205 scopus 로고    scopus 로고
    • An asymmetric SMC-kleisin bridge in prokaryotic condensin
    • Burmann F., et al. An asymmetric SMC-kleisin bridge in prokaryotic condensin. Nat. Struct. Mol. Biol. 2013, 20:371-379.
    • (2013) Nat. Struct. Mol. Biol. , vol.20 , pp. 371-379
    • Burmann, F.1
  • 80
    • 84906704724 scopus 로고    scopus 로고
    • The maintenance of chromosome structure: positioning and functioning of SMC complexes
    • Jeppsson K., et al. The maintenance of chromosome structure: positioning and functioning of SMC complexes. Nat. Rev. Mol. Cell Biol. 2014, 15:601-614.
    • (2014) Nat. Rev. Mol. Cell Biol. , vol.15 , pp. 601-614
    • Jeppsson, K.1
  • 81
    • 84899902780 scopus 로고    scopus 로고
    • The bacterial chromosome: architecture and action of bacterial SMC and SMC-like complexes
    • Nolivos S., Sherratt D. The bacterial chromosome: architecture and action of bacterial SMC and SMC-like complexes. FEMS Microbiol. Rev. 2014, 38:380-392.
    • (2014) FEMS Microbiol. Rev. , vol.38 , pp. 380-392
    • Nolivos, S.1    Sherratt, D.2
  • 82
    • 84867760568 scopus 로고    scopus 로고
    • In vivo architecture and action of bacterial structural maintenance of chromosome proteins
    • Badrinarayanan A., et al. In vivo architecture and action of bacterial structural maintenance of chromosome proteins. Science 2012, 338:528-531.
    • (2012) Science , vol.338 , pp. 528-531
    • Badrinarayanan, A.1
  • 83
    • 41649114779 scopus 로고    scopus 로고
    • MukB acts as a macromolecular clamp in DNA condensation
    • Cui Y., et al. MukB acts as a macromolecular clamp in DNA condensation. Nat. Struct. Mol. Biol. 2008, 15:411-418.
    • (2008) Nat. Struct. Mol. Biol. , vol.15 , pp. 411-418
    • Cui, Y.1
  • 84
    • 84880206175 scopus 로고    scopus 로고
    • The SMC1-SMC3 cohesin heterodimer structures DNA through supercoiling-dependent loop formation
    • Sun M., et al. The SMC1-SMC3 cohesin heterodimer structures DNA through supercoiling-dependent loop formation. Nucleic Acids Res. 2013, 41:6149-6160.
    • (2013) Nucleic Acids Res. , vol.41 , pp. 6149-6160
    • Sun, M.1
  • 85
    • 3042598127 scopus 로고    scopus 로고
    • Real-time detection of single-molecule DNA compaction by condensin I
    • Strick T.R., et al. Real-time detection of single-molecule DNA compaction by condensin I. Curr. Biol. 2004, 14:874-880.
    • (2004) Curr. Biol. , vol.14 , pp. 874-880
    • Strick, T.R.1
  • 86
    • 77949570558 scopus 로고    scopus 로고
    • Mechanics of DNA bridging by bacterial condensin MukBEF in vitro and in singulo
    • Petrushenko Z.M., et al. Mechanics of DNA bridging by bacterial condensin MukBEF in vitro and in singulo. EMBO J. 2010, 29:1126-1135.
    • (2010) EMBO J. , vol.29 , pp. 1126-1135
    • Petrushenko, Z.M.1
  • 87
    • 37549023863 scopus 로고    scopus 로고
    • Structural basis for gate-DNA recognition and bending by type IIA topoisomerases
    • Dong K.C., Berger J.M. Structural basis for gate-DNA recognition and bending by type IIA topoisomerases. Nature 2007, 450:1201-1205.
    • (2007) Nature , vol.450 , pp. 1201-1205
    • Dong, K.C.1    Berger, J.M.2
  • 88
    • 34247628510 scopus 로고    scopus 로고
    • H-NS cooperative binding to high-affinity sites in a regulatory element results in transcriptional silencing
    • Bouffartigues E., et al. H-NS cooperative binding to high-affinity sites in a regulatory element results in transcriptional silencing. Nat. Struct. Mol. Biol. 2007, 14:441-448.
    • (2007) Nat. Struct. Mol. Biol. , vol.14 , pp. 441-448
    • Bouffartigues, E.1
  • 89
    • 34547642985 scopus 로고    scopus 로고
    • Effects of nucleoid proteins on DNA repression loop formation in Escherichia coli
    • Becker N.A., et al. Effects of nucleoid proteins on DNA repression loop formation in Escherichia coli. Nucleic Acids Res. 2007, 35:3988-4000.
    • (2007) Nucleic Acids Res. , vol.35 , pp. 3988-4000
    • Becker, N.A.1
  • 90
    • 64349107871 scopus 로고    scopus 로고
    • DNA bridging and antibridging: a role for bacterial nucleoid-associated proteins in regulating the expression of laterally acquired genes
    • Dorman C.J., Kane K.A. DNA bridging and antibridging: a role for bacterial nucleoid-associated proteins in regulating the expression of laterally acquired genes. FEMS Microbiol. Rev. 2009, 33:587-592.
    • (2009) FEMS Microbiol. Rev. , vol.33 , pp. 587-592
    • Dorman, C.J.1    Kane, K.A.2
  • 91
    • 0029863159 scopus 로고    scopus 로고
    • Surveying a supercoil domain by using the gamma delta resolution system in Salmonella typhimurium
    • Higgins N.P., et al. Surveying a supercoil domain by using the gamma delta resolution system in Salmonella typhimurium. J. Bacteriol. 1996, 178:2825-2835.
    • (1996) J. Bacteriol. , vol.178 , pp. 2825-2835
    • Higgins, N.P.1
  • 92
    • 18444412915 scopus 로고    scopus 로고
    • Measuring chromosome dynamics on different time scales using resolvases with varying half-lives
    • Stein R.A., et al. Measuring chromosome dynamics on different time scales using resolvases with varying half-lives. Mol. Microbiol. 2005, 56:1049-1061.
    • (2005) Mol. Microbiol. , vol.56 , pp. 1049-1061
    • Stein, R.A.1
  • 93
    • 84874192725 scopus 로고    scopus 로고
    • Organization and segregation of bacterial chromosomes
    • Wang X., et al. Organization and segregation of bacterial chromosomes. Nat. Rev. Genet. 2013, 14:191-203.
    • (2013) Nat. Rev. Genet. , vol.14 , pp. 191-203
    • Wang, X.1
  • 94
    • 44249103292 scopus 로고    scopus 로고
    • DNA dynamics vary according to macrodomain topography in the E. coli chromosome
    • Espeli O., et al. DNA dynamics vary according to macrodomain topography in the E. coli chromosome. Mol. Microbiol. 2008, 68:1418-1427.
    • (2008) Mol. Microbiol. , vol.68 , pp. 1418-1427
    • Espeli, O.1
  • 95
    • 54949146519 scopus 로고    scopus 로고
    • The MatP/matS site-specific system organizes the terminus region of the E. coli chromosome into a macrodomain
    • Mercier R., et al. The MatP/matS site-specific system organizes the terminus region of the E. coli chromosome into a macrodomain. Cell 2008, 135:475-485.
    • (2008) Cell , vol.135 , pp. 475-485
    • Mercier, R.1
  • 96
    • 78649639015 scopus 로고    scopus 로고
    • Dynamic distribution of SeqA protein across the chromosome of Escherichia coli K-12
    • e00012-10
    • Sanchez-Romero M.A., et al. Dynamic distribution of SeqA protein across the chromosome of Escherichia coli K-12. MBio 2010, 1. e00012-10.
    • (2010) MBio , vol.1
    • Sanchez-Romero, M.A.1
  • 97
    • 84870388864 scopus 로고    scopus 로고
    • Molecular basis for a protein-mediated DNA-bridging mechanism that functions in condensation of the E. coli chromosome
    • Dupaigne P., et al. Molecular basis for a protein-mediated DNA-bridging mechanism that functions in condensation of the E. coli chromosome. Mol. Cell 2012, 48:560-571.
    • (2012) Mol. Cell , vol.48 , pp. 560-571
    • Dupaigne, P.1
  • 98
    • 0028219947 scopus 로고
    • SeqA: a negative modulator of replication initiation in E. coli
    • Lu M., et al. SeqA: a negative modulator of replication initiation in E. coli. Cell 1994, 77:413-426.
    • (1994) Cell , vol.77 , pp. 413-426
    • Lu, M.1
  • 99
    • 79959843457 scopus 로고    scopus 로고
    • Chromosomal macrodomains and associated proteins: implications for DNA organization and replication in Gram negative bacteria
    • Dame R.T., et al. Chromosomal macrodomains and associated proteins: implications for DNA organization and replication in Gram negative bacteria. PLoS Genet. 2011, 7:e1002123.
    • (2011) PLoS Genet. , vol.7 , pp. e1002123
    • Dame, R.T.1
  • 100
    • 44449087047 scopus 로고    scopus 로고
    • Single-molecule force spectroscopy: optical tweezers, magnetic tweezers and atomic force microscopy
    • Neuman K.C., Nagy A. Single-molecule force spectroscopy: optical tweezers, magnetic tweezers and atomic force microscopy. Nat. Methods 2008, 5:491-505.
    • (2008) Nat. Methods , vol.5 , pp. 491-505
    • Neuman, K.C.1    Nagy, A.2
  • 101
    • 0346258014 scopus 로고    scopus 로고
    • Backtracking by single RNA polymerase molecules observed at near-base-pair resolution
    • Shaevitz J.W., et al. Backtracking by single RNA polymerase molecules observed at near-base-pair resolution. Nature 2003, 426:684-687.
    • (2003) Nature , vol.426 , pp. 684-687
    • Shaevitz, J.W.1
  • 102
    • 84862615458 scopus 로고    scopus 로고
    • Recent developments in single-molecule DNA mechanics
    • Bryant Z., et al. Recent developments in single-molecule DNA mechanics. Curr. Opin. Struct. Biol. 2012, 22:304-312.
    • (2012) Curr. Opin. Struct. Biol. , vol.22 , pp. 304-312
    • Bryant, Z.1
  • 103
    • 84901660107 scopus 로고    scopus 로고
    • Polymerase exchange on single DNA molecules reveals processivity clamp control of translesion synthesis
    • Kath J.E., et al. Polymerase exchange on single DNA molecules reveals processivity clamp control of translesion synthesis. Proc. Natl. Acad. Sci. U.S.A. 2014, 111:7647-7652.
    • (2014) Proc. Natl. Acad. Sci. U.S.A. , vol.111 , pp. 7647-7652
    • Kath, J.E.1
  • 104
    • 77952934028 scopus 로고    scopus 로고
    • Single-molecule studies of the replisome
    • van Oijen A.M., Loparo J.J. Single-molecule studies of the replisome. Annu. Rev. Biophys. 2010, 39:429-448.
    • (2010) Annu. Rev. Biophys. , vol.39 , pp. 429-448
    • van Oijen, A.M.1    Loparo, J.J.2
  • 105
    • 78650307167 scopus 로고    scopus 로고
    • Single-molecule imaging reveals mechanisms of protein disruption by a DNA translocase
    • Finkelstein I.J., et al. Single-molecule imaging reveals mechanisms of protein disruption by a DNA translocase. Nature 2010, 468:983-987.
    • (2010) Nature , vol.468 , pp. 983-987
    • Finkelstein, I.J.1
  • 106
    • 79952259642 scopus 로고    scopus 로고
    • A single-molecule characterization of p53 search on DNA
    • Tafvizi A., et al. A single-molecule characterization of p53 search on DNA. Proc. Natl. Acad. Sci. U.S.A. 2011, 108:563-568.
    • (2011) Proc. Natl. Acad. Sci. U.S.A. , vol.108 , pp. 563-568
    • Tafvizi, A.1
  • 107
    • 77957023630 scopus 로고    scopus 로고
    • Watching individual proteins acting on single molecules of DNA
    • Amitani I., et al. Watching individual proteins acting on single molecules of DNA. Methods Enzymol. 2010, 472:261-291.
    • (2010) Methods Enzymol. , vol.472 , pp. 261-291
    • Amitani, I.1
  • 108
    • 84855453503 scopus 로고    scopus 로고
    • Single-molecule studies reveal the function of a third polymerase in the replisome
    • Georgescu R.E., et al. Single-molecule studies reveal the function of a third polymerase in the replisome. Nat. Struct. Mol. Biol. 2012, 19:113-116.
    • (2012) Nat. Struct. Mol. Biol. , vol.19 , pp. 113-116
    • Georgescu, R.E.1
  • 109
    • 84868514786 scopus 로고    scopus 로고
    • Single-molecule imaging reveals target-search mechanisms during DNA mismatch repair
    • Gorman J., et al. Single-molecule imaging reveals target-search mechanisms during DNA mismatch repair. Proc. Natl. Acad. Sci. U.S.A. 2012, 109:E3074-E3083.
    • (2012) Proc. Natl. Acad. Sci. U.S.A. , vol.109 , pp. E3074-E3083
    • Gorman, J.1
  • 110
    • 79952746781 scopus 로고    scopus 로고
    • Simultaneous single-molecule measurements of phage T7 replisome composition and function reveal the mechanism of polymerase exchange
    • Loparo J.J., et al. Simultaneous single-molecule measurements of phage T7 replisome composition and function reveal the mechanism of polymerase exchange. Proc. Natl. Acad. Sci. U.S.A. 2011, 108:3584-3589.
    • (2011) Proc. Natl. Acad. Sci. U.S.A. , vol.108 , pp. 3584-3589
    • Loparo, J.J.1
  • 111
    • 70349748587 scopus 로고    scopus 로고
    • Barrier-to-autointegration factor (BAF) condenses DNA by looping
    • Skoko D., et al. Barrier-to-autointegration factor (BAF) condenses DNA by looping. Proc. Natl. Acad. Sci. U.S.A. 2009, 106:16610-16615.
    • (2009) Proc. Natl. Acad. Sci. U.S.A. , vol.106 , pp. 16610-16615
    • Skoko, D.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.