-
1
-
-
3142774839
-
Topological domain structure of the Escherichia coli chromosome
-
Postow L., et al. Topological domain structure of the Escherichia coli chromosome. Genes Dev. 2004, 18:1766-1779.
-
(2004)
Genes Dev.
, vol.18
, pp. 1766-1779
-
-
Postow, L.1
-
2
-
-
0034650256
-
Dynamic organization of chromosomal DNA in Escherichia coli
-
Niki H., et al. Dynamic organization of chromosomal DNA in Escherichia coli. Genes Dev. 2000, 14:212-223.
-
(2000)
Genes Dev.
, vol.14
, pp. 212-223
-
-
Niki, H.1
-
3
-
-
9144264275
-
Macrodomain organization of the Escherichia coli chromosome
-
Valens M., et al. Macrodomain organization of the Escherichia coli chromosome. EMBO J. 2004, 23:4330-4341.
-
(2004)
EMBO J.
, vol.23
, pp. 4330-4341
-
-
Valens, M.1
-
5
-
-
76949089832
-
Bacterial nucleoid-associated proteins, nucleoid structure and gene expression
-
Dillon S.C., Dorman C.J. Bacterial nucleoid-associated proteins, nucleoid structure and gene expression. Nat. Rev. Microbiol. 2010, 8:185-195.
-
(2010)
Nat. Rev. Microbiol.
, vol.8
, pp. 185-195
-
-
Dillon, S.C.1
Dorman, C.J.2
-
6
-
-
57749209893
-
The major architects of chromatin: architectural proteins in bacteria, Archaea and eukaryotes
-
Luijsterburg M.S., et al. The major architects of chromatin: architectural proteins in bacteria, Archaea and eukaryotes. Crit. Rev. Biochem. Mol. Biol. 2008, 43:393-418.
-
(2008)
Crit. Rev. Biochem. Mol. Biol.
, vol.43
, pp. 393-418
-
-
Luijsterburg, M.S.1
-
7
-
-
18444369954
-
The role of nucleoid-associated proteins in the organization and compaction of bacterial chromatin
-
Dame R.T. The role of nucleoid-associated proteins in the organization and compaction of bacterial chromatin. Mol. Microbiol. 2005, 56:858-870.
-
(2005)
Mol. Microbiol.
, vol.56
, pp. 858-870
-
-
Dame, R.T.1
-
8
-
-
2442560235
-
H-NS: a universal regulator for a dynamic genome
-
Dorman C.J. H-NS: a universal regulator for a dynamic genome. Nat. Rev. Microbiol. 2004, 2:391-400.
-
(2004)
Nat. Rev. Microbiol.
, vol.2
, pp. 391-400
-
-
Dorman, C.J.1
-
9
-
-
0035083490
-
Structural basis for preferential binding of H-NS to curved DNA
-
Dame R.T., et al. Structural basis for preferential binding of H-NS to curved DNA. Biochimie 2001, 83:231-234.
-
(2001)
Biochimie
, vol.83
, pp. 231-234
-
-
Dame, R.T.1
-
10
-
-
0035725521
-
A molecular mechanism for the repression of transcription by the H-NS protein
-
Rimsky S., et al. A molecular mechanism for the repression of transcription by the H-NS protein. Mol. Microbiol. 2001, 42:1311-1323.
-
(2001)
Mol. Microbiol.
, vol.42
, pp. 1311-1323
-
-
Rimsky, S.1
-
11
-
-
0025003429
-
An Escherichia coli protein that preferentially binds to sharply curved DNA
-
Yamada H., et al. An Escherichia coli protein that preferentially binds to sharply curved DNA. J. Biochem. 1990, 108:420-425.
-
(1990)
J. Biochem.
, vol.108
, pp. 420-425
-
-
Yamada, H.1
-
12
-
-
0029018797
-
Role for the histone-like protein H-NS in growth phase-dependent and osmotic regulation of sigma S and many sigma S-dependent genes in Escherichia coli
-
Barth M., et al. Role for the histone-like protein H-NS in growth phase-dependent and osmotic regulation of sigma S and many sigma S-dependent genes in Escherichia coli. J. Bacteriol. 1995, 177:3455-3464.
-
(1995)
J. Bacteriol.
, vol.177
, pp. 3455-3464
-
-
Barth, M.1
-
13
-
-
0027979044
-
The H-NS protein is involved in the biogenesis of flagella in Escherichia coli
-
Bertin P., et al. The H-NS protein is involved in the biogenesis of flagella in Escherichia coli. J. Bacteriol. 1994, 176:5537-5540.
-
(1994)
J. Bacteriol.
, vol.176
, pp. 5537-5540
-
-
Bertin, P.1
-
14
-
-
0027500211
-
Autoregulatory expression of the Escherichia coli hns gene encoding a nucleoid protein: H-NS functions as a repressor of its own transcription
-
Ueguchi C., et al. Autoregulatory expression of the Escherichia coli hns gene encoding a nucleoid protein: H-NS functions as a repressor of its own transcription. Mol. Gen. Genet. 1993, 236:171-178.
-
(1993)
Mol. Gen. Genet.
, vol.236
, pp. 171-178
-
-
Ueguchi, C.1
-
15
-
-
0028306747
-
Evidence for a regulatory function of the histone-like Escherichia coli protein H-NS in ribosomal RNA synthesis
-
Tippner D., et al. Evidence for a regulatory function of the histone-like Escherichia coli protein H-NS in ribosomal RNA synthesis. Mol. Microbiol. 1994, 11:589-604.
-
(1994)
Mol. Microbiol.
, vol.11
, pp. 589-604
-
-
Tippner, D.1
-
16
-
-
0028285269
-
Interactions of the nucleoid-associated DNA-binding protein H-NS with the regulatory region of the osmotically controlled proU operon of Escherichia coli
-
Lucht J.M., et al. Interactions of the nucleoid-associated DNA-binding protein H-NS with the regulatory region of the osmotically controlled proU operon of Escherichia coli. J. Biol. Chem. 1994, 269:6578.
-
(1994)
J. Biol. Chem.
, vol.269
, pp. 6578
-
-
Lucht, J.M.1
-
17
-
-
33846465923
-
H-NS, the genome sentinel
-
Dorman C.J. H-NS, the genome sentinel. Nat. Rev. Microbiol. 2007, 5:157-161.
-
(2007)
Nat. Rev. Microbiol.
, vol.5
, pp. 157-161
-
-
Dorman, C.J.1
-
18
-
-
33746629034
-
Role of histone-like proteins H-NS and StpA in expression of virulence determinants of uropathogenic Escherichia coli
-
Muller C.M., et al. Role of histone-like proteins H-NS and StpA in expression of virulence determinants of uropathogenic Escherichia coli. J. Bacteriol. 2006, 188:5428-5438.
-
(2006)
J. Bacteriol.
, vol.188
, pp. 5428-5438
-
-
Muller, C.M.1
-
19
-
-
0027408394
-
The Escherichia coli nucleoid protein H-NS functions directly as a transcriptional repressor
-
Ueguchi C., Mizuno T. The Escherichia coli nucleoid protein H-NS functions directly as a transcriptional repressor. EMBO J. 1993, 12:1039-1046.
-
(1993)
EMBO J.
, vol.12
, pp. 1039-1046
-
-
Ueguchi, C.1
Mizuno, T.2
-
20
-
-
0028085068
-
The chromatin-associated protein H-NS alters DNA topology in vitro
-
Tupper A.E., et al. The chromatin-associated protein H-NS alters DNA topology in vitro. EMBO J. 1994, 13:258-268.
-
(1994)
EMBO J.
, vol.13
, pp. 258-268
-
-
Tupper, A.E.1
-
21
-
-
0021760528
-
H1a, an E. coli DNA-binding protein which accumulates in stationary phase, strongly compacts DNA in vitro
-
Spassky A., et al. H1a, an E. coli DNA-binding protein which accumulates in stationary phase, strongly compacts DNA in vitro. Nucleic Acids Res. 1984, 12:5321-5340.
-
(1984)
Nucleic Acids Res.
, vol.12
, pp. 5321-5340
-
-
Spassky, A.1
-
22
-
-
0026573628
-
Lethal overproduction of the Escherichia coli nucleoid protein H-NS: ultramicroscopic and molecular autopsy
-
Spurio R., et al. Lethal overproduction of the Escherichia coli nucleoid protein H-NS: ultramicroscopic and molecular autopsy. Mol. Gen. Genet. 1992, 231:201-211.
-
(1992)
Mol. Gen. Genet.
, vol.231
, pp. 201-211
-
-
Spurio, R.1
-
23
-
-
0034666271
-
H-NS mediated compaction of DNA visualised by atomic force microscopy
-
Dame R.T., et al. H-NS mediated compaction of DNA visualised by atomic force microscopy. Nucleic Acids Res. 2000, 28:3504-3510.
-
(2000)
Nucleic Acids Res.
, vol.28
, pp. 3504-3510
-
-
Dame, R.T.1
-
24
-
-
76749118994
-
A divalent switch drives H-NS/DNA-binding conformations between stiffening and bridging modes
-
Liu Y., et al. A divalent switch drives H-NS/DNA-binding conformations between stiffening and bridging modes. Genes Dev. 2010, 24:339-344.
-
(2010)
Genes Dev.
, vol.24
, pp. 339-344
-
-
Liu, Y.1
-
25
-
-
0037127209
-
Structural basis for H-NS-mediated trapping of RNA polymerase in the open initiation complex at the rrnB P1
-
Dame R.T., et al. Structural basis for H-NS-mediated trapping of RNA polymerase in the open initiation complex at the rrnB P1. J. Biol. Chem. 2002, 277:2146-2150.
-
(2002)
J. Biol. Chem.
, vol.277
, pp. 2146-2150
-
-
Dame, R.T.1
-
26
-
-
0034685608
-
The bacterial DNA-binding protein H-NS represses ribosomal RNA transcription by trapping RNA polymerase in the initiation complex
-
Schroder O., Wagner R. The bacterial DNA-binding protein H-NS represses ribosomal RNA transcription by trapping RNA polymerase in the initiation complex. J. Mol. Biol. 2000, 298:737-748.
-
(2000)
J. Mol. Biol.
, vol.298
, pp. 737-748
-
-
Schroder, O.1
Wagner, R.2
-
27
-
-
1842453825
-
Structure of the histone-like protein H-NS and its role in regulation and genome superstructure
-
Rimsky S. Structure of the histone-like protein H-NS and its role in regulation and genome superstructure. Curr. Opin. Microbiol. 2004, 7:109-114.
-
(2004)
Curr. Opin. Microbiol.
, vol.7
, pp. 109-114
-
-
Rimsky, S.1
-
28
-
-
0028900971
-
Solution structure of the DNA binding domain of a nucleoid-associated protein, H-NS, from Escherichia coli
-
Shindo H., et al. Solution structure of the DNA binding domain of a nucleoid-associated protein, H-NS, from Escherichia coli. FEBS Lett. 1995, 360:125-131.
-
(1995)
FEBS Lett.
, vol.360
, pp. 125-131
-
-
Shindo, H.1
-
29
-
-
77957683898
-
H-NS forms a superhelical protein scaffold for DNA condensation
-
Arold S.T., et al. H-NS forms a superhelical protein scaffold for DNA condensation. Proc. Natl. Acad. Sci. U.S.A. 2010, 107:15728-15732.
-
(2010)
Proc. Natl. Acad. Sci. U.S.A.
, vol.107
, pp. 15728-15732
-
-
Arold, S.T.1
-
30
-
-
0037336248
-
The H-NS dimerization domain defines a new fold contributing to DNA recognition
-
Bloch V., et al. The H-NS dimerization domain defines a new fold contributing to DNA recognition. Nat. Struct. Biol. 2003, 10:212-218.
-
(2003)
Nat. Struct. Biol.
, vol.10
, pp. 212-218
-
-
Bloch, V.1
-
31
-
-
0242289355
-
Crystal structure of the N-terminal dimerisation domain of VicH, the H-NS-like protein of Vibrio cholerae
-
Cerdan R., et al. Crystal structure of the N-terminal dimerisation domain of VicH, the H-NS-like protein of Vibrio cholerae. J. Mol. Biol. 2003, 334:179-185.
-
(2003)
J. Mol. Biol.
, vol.334
, pp. 179-185
-
-
Cerdan, R.1
-
32
-
-
33751098486
-
Bacterial chromatin organization by H-NS protein unravelled using dual DNA manipulation
-
Dame R.T., et al. Bacterial chromatin organization by H-NS protein unravelled using dual DNA manipulation. Nature 2006, 444:387-390.
-
(2006)
Nature
, vol.444
, pp. 387-390
-
-
Dame, R.T.1
-
33
-
-
0037381991
-
Increased bending rigidity of single DNA molecules by H-NS, a temperature and osmolarity sensor
-
Amit R., et al. Increased bending rigidity of single DNA molecules by H-NS, a temperature and osmolarity sensor. Biophys. J. 2003, 84:2467-2473.
-
(2003)
Biophys. J.
, vol.84
, pp. 2467-2473
-
-
Amit, R.1
-
34
-
-
84905581331
-
Single-molecule studies on the mechanical interplay between DNA supercoiling and H-NS DNA architectural properties
-
Lim C.J., et al. Single-molecule studies on the mechanical interplay between DNA supercoiling and H-NS DNA architectural properties. Nucleic Acids Res. 2014, 42:8369-8378.
-
(2014)
Nucleic Acids Res.
, vol.42
, pp. 8369-8378
-
-
Lim, C.J.1
-
35
-
-
84864150307
-
Nucleoprotein filament formation is the structural basis for bacterial protein H-NS gene silencing
-
Lim C.J., et al. Nucleoprotein filament formation is the structural basis for bacterial protein H-NS gene silencing. Sci. Rep. 2012, 2:509.
-
(2012)
Sci. Rep.
, vol.2
, pp. 509
-
-
Lim, C.J.1
-
36
-
-
0030972952
-
H-NS: a modulator of environmentally regulated gene expression
-
Atlung T., Ingmer H. H-NS: a modulator of environmentally regulated gene expression. Mol. Microbiol. 1997, 24:7-17.
-
(1997)
Mol. Microbiol.
, vol.24
, pp. 7-17
-
-
Atlung, T.1
Ingmer, H.2
-
37
-
-
27444441689
-
H-NS is a part of a thermally controlled mechanism for bacterial gene regulation
-
Ono S., et al. H-NS is a part of a thermally controlled mechanism for bacterial gene regulation. Biochem. J. 2005, 391:203-213.
-
(2005)
Biochem. J.
, vol.391
, pp. 203-213
-
-
Ono, S.1
-
38
-
-
80052643394
-
Chromosome organization by a nucleoid-associated protein in live bacteria
-
Wang W., et al. Chromosome organization by a nucleoid-associated protein in live bacteria. Science 2011, 333:1445-1449.
-
(2011)
Science
, vol.333
, pp. 1445-1449
-
-
Wang, W.1
-
39
-
-
84902172298
-
Characterization and development of photoactivatable fluorescent proteins for single-molecule-based superresolution imaging
-
Wang S., et al. Characterization and development of photoactivatable fluorescent proteins for single-molecule-based superresolution imaging. Proc. Natl. Acad. Sci. U.S.A. 2014, 111:8452-8457.
-
(2014)
Proc. Natl. Acad. Sci. U.S.A.
, vol.111
, pp. 8452-8457
-
-
Wang, S.1
-
40
-
-
84880242640
-
Genome conformation capture reveals that the Escherichia coli chromosome is organized by replication and transcription
-
Cagliero C., et al. Genome conformation capture reveals that the Escherichia coli chromosome is organized by replication and transcription. Nucleic Acids Res. 2013, 41:6058-6071.
-
(2013)
Nucleic Acids Res.
, vol.41
, pp. 6058-6071
-
-
Cagliero, C.1
-
41
-
-
84892725835
-
Defining the role of ATP hydrolysis in mitotic segregation of bacterial plasmids
-
Ah-Seng Y., et al. Defining the role of ATP hydrolysis in mitotic segregation of bacterial plasmids. PLoS Genet. 2013, 9:e1003956.
-
(2013)
PLoS Genet.
, vol.9
, pp. e1003956
-
-
Ah-Seng, Y.1
-
42
-
-
33846919050
-
The tail of the ParG DNA segregation protein remodels ParF polymers and enhances ATP hydrolysis via an arginine finger-like motif
-
Barilla D., et al. The tail of the ParG DNA segregation protein remodels ParF polymers and enhances ATP hydrolysis via an arginine finger-like motif. Proc. Natl. Acad. Sci. U.S.A. 2007, 104:1811-1816.
-
(2007)
Proc. Natl. Acad. Sci. U.S.A.
, vol.104
, pp. 1811-1816
-
-
Barilla, D.1
-
43
-
-
0026585678
-
Biochemical activities of the parA partition protein of the P1 plasmid
-
Davis M.A., et al. Biochemical activities of the parA partition protein of the P1 plasmid. Mol. Microbiol. 1992, 6:1141-1147.
-
(1992)
Mol. Microbiol.
, vol.6
, pp. 1141-1147
-
-
Davis, M.A.1
-
44
-
-
0036670336
-
ParB-stimulated nucleotide exchange regulates a switch in functionally distinct ParA activities
-
Easter J., Gober J.W. ParB-stimulated nucleotide exchange regulates a switch in functionally distinct ParA activities. Mol. Cell 2002, 10:427-434.
-
(2002)
Mol. Cell
, vol.10
, pp. 427-434
-
-
Easter, J.1
Gober, J.W.2
-
45
-
-
79551683984
-
Spo0J regulates the oligomeric state of Soj to trigger its switch from an activator to an inhibitor of DNA replication initiation
-
Scholefield G., et al. Spo0J regulates the oligomeric state of Soj to trigger its switch from an activator to an inhibitor of DNA replication initiation. Mol. Microbiol. 2011, 79:1089-1100.
-
(2011)
Mol. Microbiol.
, vol.79
, pp. 1089-1100
-
-
Scholefield, G.1
-
46
-
-
73349101910
-
Movement and equipositioning of plasmids by ParA filament disassembly
-
Ringgaard S., et al. Movement and equipositioning of plasmids by ParA filament disassembly. Proc. Natl. Acad. Sci. U.S.A. 2009, 106:19369-19374.
-
(2009)
Proc. Natl. Acad. Sci. U.S.A.
, vol.106
, pp. 19369-19374
-
-
Ringgaard, S.1
-
47
-
-
84877631843
-
ParA-mediated plasmid partition driven by protein pattern self-organization
-
Hwang L.C., et al. ParA-mediated plasmid partition driven by protein pattern self-organization. EMBO J. 2013, 32:1238-1249.
-
(2013)
EMBO J.
, vol.32
, pp. 1238-1249
-
-
Hwang, L.C.1
-
48
-
-
84897486085
-
A propagating ATPase gradient drives transport of surface-confined cellular cargo
-
Vecchiarelli A.G., et al. A propagating ATPase gradient drives transport of surface-confined cellular cargo. Proc. Natl. Acad. Sci. U.S.A. 2014, 111:4880-4885.
-
(2014)
Proc. Natl. Acad. Sci. U.S.A.
, vol.111
, pp. 4880-4885
-
-
Vecchiarelli, A.G.1
-
49
-
-
84876063388
-
Cell-free study of F plasmid partition provides evidence for cargo transport by a diffusion-ratchet mechanism
-
Vecchiarelli A.G., et al. Cell-free study of F plasmid partition provides evidence for cargo transport by a diffusion-ratchet mechanism. Proc. Natl. Acad. Sci. U.S.A. 2013, 110:E1390-E1397.
-
(2013)
Proc. Natl. Acad. Sci. U.S.A.
, vol.110
, pp. E1390-E1397
-
-
Vecchiarelli, A.G.1
-
50
-
-
84868026951
-
Surfing biological surfaces: exploiting the nucleoid for partition and transport in bacteria
-
Vecchiarelli A.G., et al. Surfing biological surfaces: exploiting the nucleoid for partition and transport in bacteria. Mol. Microbiol. 2012, 86:513-523.
-
(2012)
Mol. Microbiol.
, vol.86
, pp. 513-523
-
-
Vecchiarelli, A.G.1
-
51
-
-
33845460999
-
A dynamic, mitotic-like mechanism for bacterial chromosome segregation
-
Fogel M.A., Waldor M.K. A dynamic, mitotic-like mechanism for bacterial chromosome segregation. Genes Dev. 2006, 20:3269-3282.
-
(2006)
Genes Dev.
, vol.20
, pp. 3269-3282
-
-
Fogel, M.A.1
Waldor, M.K.2
-
52
-
-
77955175864
-
A spindle-like apparatus guides bacterial chromosome segregation
-
Ptacin J.L., et al. A spindle-like apparatus guides bacterial chromosome segregation. Nat. Cell Biol. 2010, 12:791-798.
-
(2010)
Nat. Cell Biol.
, vol.12
, pp. 791-798
-
-
Ptacin, J.L.1
-
53
-
-
84902324665
-
Evidence for a DNA-relay mechanism in ParABS-mediated chromosome segregation
-
Lim H.C., et al. Evidence for a DNA-relay mechanism in ParABS-mediated chromosome segregation. Elife 2014, 3:e02758.
-
(2014)
Elife
, vol.3
, pp. e02758
-
-
Lim, H.C.1
-
54
-
-
81255146230
-
The three-dimensional architecture of a bacterial genome and its alteration by genetic perturbation
-
Umbarger M.A., et al. The three-dimensional architecture of a bacterial genome and its alteration by genetic perturbation. Mol. Cell 2011, 44:252-264.
-
(2011)
Mol. Cell
, vol.44
, pp. 252-264
-
-
Umbarger, M.A.1
-
55
-
-
33646401543
-
The chromosome partitioning proteins Soj (ParA) and Spo0J (ParB) contribute to accurate chromosome partitioning, separation of replicated sister origins, and regulation of replication initiation in Bacillus subtilis
-
Lee P.S., Grossman A.D. The chromosome partitioning proteins Soj (ParA) and Spo0J (ParB) contribute to accurate chromosome partitioning, separation of replicated sister origins, and regulation of replication initiation in Bacillus subtilis. Mol. Microbiol. 2006, 60:853-869.
-
(2006)
Mol. Microbiol.
, vol.60
, pp. 853-869
-
-
Lee, P.S.1
Grossman, A.D.2
-
56
-
-
84895067831
-
The SMC condensin complex is required for origin segregation in Bacillus subtilis
-
Wang X., et al. The SMC condensin complex is required for origin segregation in Bacillus subtilis. Curr. Biol. 2014, 24:287-292.
-
(2014)
Curr. Biol.
, vol.24
, pp. 287-292
-
-
Wang, X.1
-
57
-
-
18844377820
-
Flexibility in repression and cooperativity by KorB of broad host range IncP-1 plasmid RK2
-
Bingle L.E., et al. Flexibility in repression and cooperativity by KorB of broad host range IncP-1 plasmid RK2. J. Mol. Biol. 2005, 349:302-316.
-
(2005)
J. Mol. Biol.
, vol.349
, pp. 302-316
-
-
Bingle, L.E.1
-
58
-
-
0028960197
-
SopB protein-mediated silencing of genes linked to the sopC locus of Escherichia coli F plasmid
-
Lynch A.S., Wang J.C. SopB protein-mediated silencing of genes linked to the sopC locus of Escherichia coli F plasmid. Proc. Natl. Acad. Sci. U.S.A. 1995, 92:1896-1900.
-
(1995)
Proc. Natl. Acad. Sci. U.S.A.
, vol.92
, pp. 1896-1900
-
-
Lynch, A.S.1
Wang, J.C.2
-
59
-
-
0033593587
-
Silencing of genes flanking the P1 plasmid centromere
-
Rodionov O., et al. Silencing of genes flanking the P1 plasmid centromere. Science 1999, 283:546-549.
-
(1999)
Science
, vol.283
, pp. 546-549
-
-
Rodionov, O.1
-
60
-
-
84903975412
-
Chromosome segregation proteins of Vibrio cholerae as transcription regulators
-
Baek J.H., et al. Chromosome segregation proteins of Vibrio cholerae as transcription regulators. MBio 2014, 5:e01061-e1114.
-
(2014)
MBio
, vol.5
, pp. e01061-e1114
-
-
Baek, J.H.1
-
61
-
-
4944234921
-
ParB of Pseudomonas aeruginosa: interactions with its partner ParA and its target parS and specific effects on bacterial growth
-
Bartosik A.A., et al. ParB of Pseudomonas aeruginosa: interactions with its partner ParA and its target parS and specific effects on bacterial growth. J. Bacteriol. 2004, 186:6983-6998.
-
(2004)
J. Bacteriol.
, vol.186
, pp. 6983-6998
-
-
Bartosik, A.A.1
-
62
-
-
34247497733
-
Whole-genome analysis of the chromosome partitioning and sporulation protein Spo0J (ParB) reveals spreading and origin-distal sites on the Bacillus subtilis chromosome
-
Breier A.M., Grossman A.D. Whole-genome analysis of the chromosome partitioning and sporulation protein Spo0J (ParB) reveals spreading and origin-distal sites on the Bacillus subtilis chromosome. Mol. Microbiol. 2007, 64:703-718.
-
(2007)
Mol. Microbiol.
, vol.64
, pp. 703-718
-
-
Breier, A.M.1
Grossman, A.D.2
-
63
-
-
33747067108
-
The bacterial chromosome segregation protein Spo0J spreads along DNA from parS nucleation sites
-
Murray H., et al. The bacterial chromosome segregation protein Spo0J spreads along DNA from parS nucleation sites. Mol. Microbiol. 2006, 61:1352-1361.
-
(2006)
Mol. Microbiol.
, vol.61
, pp. 1352-1361
-
-
Murray, H.1
-
64
-
-
84901761890
-
ParB spreading requires DNA bridging
-
Graham T.G., et al. ParB spreading requires DNA bridging. Genes Dev. 2014, 28:1228-1238.
-
(2014)
Genes Dev.
, vol.28
, pp. 1228-1238
-
-
Graham, T.G.1
-
66
-
-
84941094741
-
Specific and non-specific interactions of ParB with DNA: implications for chromosome segregation
-
Published online January 8, 2015
-
Taylor J.A., et al. Specific and non-specific interactions of ParB with DNA: implications for chromosome segregation. Nucleic Acids Res. 2015, Published online January 8, 2015, http://dx.doi.org/10.1093/nar/gku1295.
-
(2015)
Nucleic Acids Res.
-
-
Taylor, J.A.1
-
67
-
-
33846924831
-
Structural biology of plasmid segregation proteins
-
Schumacher M.A. Structural biology of plasmid segregation proteins. Curr. Opin. Struct. Biol. 2007, 17:103-109.
-
(2007)
Curr. Opin. Struct. Biol.
, vol.17
, pp. 103-109
-
-
Schumacher, M.A.1
-
68
-
-
0034882694
-
Genetic analysis of the chromosome segregation protein Spo0J of Bacillus subtilis: evidence for separate domains involved in DNA binding and interactions with Soj protein
-
Autret S., et al. Genetic analysis of the chromosome segregation protein Spo0J of Bacillus subtilis: evidence for separate domains involved in DNA binding and interactions with Soj protein. Mol. Microbiol. 2001, 41:743-755.
-
(2001)
Mol. Microbiol.
, vol.41
, pp. 743-755
-
-
Autret, S.1
-
69
-
-
65549135760
-
Recruitment of condensin to replication origin regions by ParB/SpoOJ promotes chromosome segregation in B. subtilis
-
Gruber S., Errington J. Recruitment of condensin to replication origin regions by ParB/SpoOJ promotes chromosome segregation in B. subtilis. Cell 2009, 137:685-696.
-
(2009)
Cell
, vol.137
, pp. 685-696
-
-
Gruber, S.1
Errington, J.2
-
70
-
-
65549149524
-
Recruitment of SMC by ParB-parS organizes the origin region and promotes efficient chromosome segregation
-
Sullivan N.L., et al. Recruitment of SMC by ParB-parS organizes the origin region and promotes efficient chromosome segregation. Cell 2009, 137:697-707.
-
(2009)
Cell
, vol.137
, pp. 697-707
-
-
Sullivan, N.L.1
-
71
-
-
84901807860
-
How to build segregation complexes in bacteria: use bridges
-
Funnell B.E. How to build segregation complexes in bacteria: use bridges. Genes Dev. 2014, 28:1140-1142.
-
(2014)
Genes Dev.
, vol.28
, pp. 1140-1142
-
-
Funnell, B.E.1
-
72
-
-
84902602974
-
Condensation and localization of the partitioning protein ParB on the bacterial chromosome
-
Broedersz C.P., et al. Condensation and localization of the partitioning protein ParB on the bacterial chromosome. Proc. Natl. Acad. Sci. U.S.A. 2014, 111:8809-8814.
-
(2014)
Proc. Natl. Acad. Sci. U.S.A.
, vol.111
, pp. 8809-8814
-
-
Broedersz, C.P.1
-
73
-
-
33646177549
-
At the heart of the chromosome: SMC proteins in action
-
Hirano T. At the heart of the chromosome: SMC proteins in action. Nat. Rev. Mol. Cell Biol. 2006, 7:311-322.
-
(2006)
Nat. Rev. Mol. Cell Biol.
, vol.7
, pp. 311-322
-
-
Hirano, T.1
-
74
-
-
63049099775
-
RAD50, an SMC family member with multiple roles in DNA break repair: how does ATP affect function?
-
Kinoshita E., et al. RAD50, an SMC family member with multiple roles in DNA break repair: how does ATP affect function?. Chromosome Res. 2009, 17:277-288.
-
(2009)
Chromosome Res.
, vol.17
, pp. 277-288
-
-
Kinoshita, E.1
-
75
-
-
63049084910
-
Dynamics of the bacterial SMC complex and SMC-like proteins involved in DNA repair
-
Graumann P.L., Knust T. Dynamics of the bacterial SMC complex and SMC-like proteins involved in DNA repair. Chromosome Res. 2009, 17:265-275.
-
(2009)
Chromosome Res.
, vol.17
, pp. 265-275
-
-
Graumann, P.L.1
Knust, T.2
-
76
-
-
34548348945
-
MukB colocalizes with the oriC region and is required for organization of the two Escherichia coli chromosome arms into separate cell halves
-
Danilova O., et al. MukB colocalizes with the oriC region and is required for organization of the two Escherichia coli chromosome arms into separate cell halves. Mol. Microbiol. 2007, 65:1485-1492.
-
(2007)
Mol. Microbiol.
, vol.65
, pp. 1485-1492
-
-
Danilova, O.1
-
77
-
-
79960708973
-
SMC is recruited to oriC by ParB and promotes chromosome segregation in Streptococcus pneumoniae
-
Minnen A., et al. SMC is recruited to oriC by ParB and promotes chromosome segregation in Streptococcus pneumoniae. Mol. Microbiol. 2011, 81:676-688.
-
(2011)
Mol. Microbiol.
, vol.81
, pp. 676-688
-
-
Minnen, A.1
-
78
-
-
84887322004
-
High-resolution mapping of the spatial organization of a bacterial chromosome
-
Le T.B., et al. High-resolution mapping of the spatial organization of a bacterial chromosome. Science 2013, 342:731-734.
-
(2013)
Science
, vol.342
, pp. 731-734
-
-
Le, T.B.1
-
79
-
-
84875165205
-
An asymmetric SMC-kleisin bridge in prokaryotic condensin
-
Burmann F., et al. An asymmetric SMC-kleisin bridge in prokaryotic condensin. Nat. Struct. Mol. Biol. 2013, 20:371-379.
-
(2013)
Nat. Struct. Mol. Biol.
, vol.20
, pp. 371-379
-
-
Burmann, F.1
-
80
-
-
84906704724
-
The maintenance of chromosome structure: positioning and functioning of SMC complexes
-
Jeppsson K., et al. The maintenance of chromosome structure: positioning and functioning of SMC complexes. Nat. Rev. Mol. Cell Biol. 2014, 15:601-614.
-
(2014)
Nat. Rev. Mol. Cell Biol.
, vol.15
, pp. 601-614
-
-
Jeppsson, K.1
-
81
-
-
84899902780
-
The bacterial chromosome: architecture and action of bacterial SMC and SMC-like complexes
-
Nolivos S., Sherratt D. The bacterial chromosome: architecture and action of bacterial SMC and SMC-like complexes. FEMS Microbiol. Rev. 2014, 38:380-392.
-
(2014)
FEMS Microbiol. Rev.
, vol.38
, pp. 380-392
-
-
Nolivos, S.1
Sherratt, D.2
-
82
-
-
84867760568
-
In vivo architecture and action of bacterial structural maintenance of chromosome proteins
-
Badrinarayanan A., et al. In vivo architecture and action of bacterial structural maintenance of chromosome proteins. Science 2012, 338:528-531.
-
(2012)
Science
, vol.338
, pp. 528-531
-
-
Badrinarayanan, A.1
-
83
-
-
41649114779
-
MukB acts as a macromolecular clamp in DNA condensation
-
Cui Y., et al. MukB acts as a macromolecular clamp in DNA condensation. Nat. Struct. Mol. Biol. 2008, 15:411-418.
-
(2008)
Nat. Struct. Mol. Biol.
, vol.15
, pp. 411-418
-
-
Cui, Y.1
-
84
-
-
84880206175
-
The SMC1-SMC3 cohesin heterodimer structures DNA through supercoiling-dependent loop formation
-
Sun M., et al. The SMC1-SMC3 cohesin heterodimer structures DNA through supercoiling-dependent loop formation. Nucleic Acids Res. 2013, 41:6149-6160.
-
(2013)
Nucleic Acids Res.
, vol.41
, pp. 6149-6160
-
-
Sun, M.1
-
85
-
-
3042598127
-
Real-time detection of single-molecule DNA compaction by condensin I
-
Strick T.R., et al. Real-time detection of single-molecule DNA compaction by condensin I. Curr. Biol. 2004, 14:874-880.
-
(2004)
Curr. Biol.
, vol.14
, pp. 874-880
-
-
Strick, T.R.1
-
86
-
-
77949570558
-
Mechanics of DNA bridging by bacterial condensin MukBEF in vitro and in singulo
-
Petrushenko Z.M., et al. Mechanics of DNA bridging by bacterial condensin MukBEF in vitro and in singulo. EMBO J. 2010, 29:1126-1135.
-
(2010)
EMBO J.
, vol.29
, pp. 1126-1135
-
-
Petrushenko, Z.M.1
-
87
-
-
37549023863
-
Structural basis for gate-DNA recognition and bending by type IIA topoisomerases
-
Dong K.C., Berger J.M. Structural basis for gate-DNA recognition and bending by type IIA topoisomerases. Nature 2007, 450:1201-1205.
-
(2007)
Nature
, vol.450
, pp. 1201-1205
-
-
Dong, K.C.1
Berger, J.M.2
-
88
-
-
34247628510
-
H-NS cooperative binding to high-affinity sites in a regulatory element results in transcriptional silencing
-
Bouffartigues E., et al. H-NS cooperative binding to high-affinity sites in a regulatory element results in transcriptional silencing. Nat. Struct. Mol. Biol. 2007, 14:441-448.
-
(2007)
Nat. Struct. Mol. Biol.
, vol.14
, pp. 441-448
-
-
Bouffartigues, E.1
-
89
-
-
34547642985
-
Effects of nucleoid proteins on DNA repression loop formation in Escherichia coli
-
Becker N.A., et al. Effects of nucleoid proteins on DNA repression loop formation in Escherichia coli. Nucleic Acids Res. 2007, 35:3988-4000.
-
(2007)
Nucleic Acids Res.
, vol.35
, pp. 3988-4000
-
-
Becker, N.A.1
-
90
-
-
64349107871
-
DNA bridging and antibridging: a role for bacterial nucleoid-associated proteins in regulating the expression of laterally acquired genes
-
Dorman C.J., Kane K.A. DNA bridging and antibridging: a role for bacterial nucleoid-associated proteins in regulating the expression of laterally acquired genes. FEMS Microbiol. Rev. 2009, 33:587-592.
-
(2009)
FEMS Microbiol. Rev.
, vol.33
, pp. 587-592
-
-
Dorman, C.J.1
Kane, K.A.2
-
91
-
-
0029863159
-
Surveying a supercoil domain by using the gamma delta resolution system in Salmonella typhimurium
-
Higgins N.P., et al. Surveying a supercoil domain by using the gamma delta resolution system in Salmonella typhimurium. J. Bacteriol. 1996, 178:2825-2835.
-
(1996)
J. Bacteriol.
, vol.178
, pp. 2825-2835
-
-
Higgins, N.P.1
-
92
-
-
18444412915
-
Measuring chromosome dynamics on different time scales using resolvases with varying half-lives
-
Stein R.A., et al. Measuring chromosome dynamics on different time scales using resolvases with varying half-lives. Mol. Microbiol. 2005, 56:1049-1061.
-
(2005)
Mol. Microbiol.
, vol.56
, pp. 1049-1061
-
-
Stein, R.A.1
-
93
-
-
84874192725
-
Organization and segregation of bacterial chromosomes
-
Wang X., et al. Organization and segregation of bacterial chromosomes. Nat. Rev. Genet. 2013, 14:191-203.
-
(2013)
Nat. Rev. Genet.
, vol.14
, pp. 191-203
-
-
Wang, X.1
-
94
-
-
44249103292
-
DNA dynamics vary according to macrodomain topography in the E. coli chromosome
-
Espeli O., et al. DNA dynamics vary according to macrodomain topography in the E. coli chromosome. Mol. Microbiol. 2008, 68:1418-1427.
-
(2008)
Mol. Microbiol.
, vol.68
, pp. 1418-1427
-
-
Espeli, O.1
-
95
-
-
54949146519
-
The MatP/matS site-specific system organizes the terminus region of the E. coli chromosome into a macrodomain
-
Mercier R., et al. The MatP/matS site-specific system organizes the terminus region of the E. coli chromosome into a macrodomain. Cell 2008, 135:475-485.
-
(2008)
Cell
, vol.135
, pp. 475-485
-
-
Mercier, R.1
-
96
-
-
78649639015
-
Dynamic distribution of SeqA protein across the chromosome of Escherichia coli K-12
-
e00012-10
-
Sanchez-Romero M.A., et al. Dynamic distribution of SeqA protein across the chromosome of Escherichia coli K-12. MBio 2010, 1. e00012-10.
-
(2010)
MBio
, vol.1
-
-
Sanchez-Romero, M.A.1
-
97
-
-
84870388864
-
Molecular basis for a protein-mediated DNA-bridging mechanism that functions in condensation of the E. coli chromosome
-
Dupaigne P., et al. Molecular basis for a protein-mediated DNA-bridging mechanism that functions in condensation of the E. coli chromosome. Mol. Cell 2012, 48:560-571.
-
(2012)
Mol. Cell
, vol.48
, pp. 560-571
-
-
Dupaigne, P.1
-
98
-
-
0028219947
-
SeqA: a negative modulator of replication initiation in E. coli
-
Lu M., et al. SeqA: a negative modulator of replication initiation in E. coli. Cell 1994, 77:413-426.
-
(1994)
Cell
, vol.77
, pp. 413-426
-
-
Lu, M.1
-
99
-
-
79959843457
-
Chromosomal macrodomains and associated proteins: implications for DNA organization and replication in Gram negative bacteria
-
Dame R.T., et al. Chromosomal macrodomains and associated proteins: implications for DNA organization and replication in Gram negative bacteria. PLoS Genet. 2011, 7:e1002123.
-
(2011)
PLoS Genet.
, vol.7
, pp. e1002123
-
-
Dame, R.T.1
-
100
-
-
44449087047
-
Single-molecule force spectroscopy: optical tweezers, magnetic tweezers and atomic force microscopy
-
Neuman K.C., Nagy A. Single-molecule force spectroscopy: optical tweezers, magnetic tweezers and atomic force microscopy. Nat. Methods 2008, 5:491-505.
-
(2008)
Nat. Methods
, vol.5
, pp. 491-505
-
-
Neuman, K.C.1
Nagy, A.2
-
101
-
-
0346258014
-
Backtracking by single RNA polymerase molecules observed at near-base-pair resolution
-
Shaevitz J.W., et al. Backtracking by single RNA polymerase molecules observed at near-base-pair resolution. Nature 2003, 426:684-687.
-
(2003)
Nature
, vol.426
, pp. 684-687
-
-
Shaevitz, J.W.1
-
102
-
-
84862615458
-
Recent developments in single-molecule DNA mechanics
-
Bryant Z., et al. Recent developments in single-molecule DNA mechanics. Curr. Opin. Struct. Biol. 2012, 22:304-312.
-
(2012)
Curr. Opin. Struct. Biol.
, vol.22
, pp. 304-312
-
-
Bryant, Z.1
-
103
-
-
84901660107
-
Polymerase exchange on single DNA molecules reveals processivity clamp control of translesion synthesis
-
Kath J.E., et al. Polymerase exchange on single DNA molecules reveals processivity clamp control of translesion synthesis. Proc. Natl. Acad. Sci. U.S.A. 2014, 111:7647-7652.
-
(2014)
Proc. Natl. Acad. Sci. U.S.A.
, vol.111
, pp. 7647-7652
-
-
Kath, J.E.1
-
104
-
-
77952934028
-
Single-molecule studies of the replisome
-
van Oijen A.M., Loparo J.J. Single-molecule studies of the replisome. Annu. Rev. Biophys. 2010, 39:429-448.
-
(2010)
Annu. Rev. Biophys.
, vol.39
, pp. 429-448
-
-
van Oijen, A.M.1
Loparo, J.J.2
-
105
-
-
78650307167
-
Single-molecule imaging reveals mechanisms of protein disruption by a DNA translocase
-
Finkelstein I.J., et al. Single-molecule imaging reveals mechanisms of protein disruption by a DNA translocase. Nature 2010, 468:983-987.
-
(2010)
Nature
, vol.468
, pp. 983-987
-
-
Finkelstein, I.J.1
-
106
-
-
79952259642
-
A single-molecule characterization of p53 search on DNA
-
Tafvizi A., et al. A single-molecule characterization of p53 search on DNA. Proc. Natl. Acad. Sci. U.S.A. 2011, 108:563-568.
-
(2011)
Proc. Natl. Acad. Sci. U.S.A.
, vol.108
, pp. 563-568
-
-
Tafvizi, A.1
-
107
-
-
77957023630
-
Watching individual proteins acting on single molecules of DNA
-
Amitani I., et al. Watching individual proteins acting on single molecules of DNA. Methods Enzymol. 2010, 472:261-291.
-
(2010)
Methods Enzymol.
, vol.472
, pp. 261-291
-
-
Amitani, I.1
-
108
-
-
84855453503
-
Single-molecule studies reveal the function of a third polymerase in the replisome
-
Georgescu R.E., et al. Single-molecule studies reveal the function of a third polymerase in the replisome. Nat. Struct. Mol. Biol. 2012, 19:113-116.
-
(2012)
Nat. Struct. Mol. Biol.
, vol.19
, pp. 113-116
-
-
Georgescu, R.E.1
-
109
-
-
84868514786
-
Single-molecule imaging reveals target-search mechanisms during DNA mismatch repair
-
Gorman J., et al. Single-molecule imaging reveals target-search mechanisms during DNA mismatch repair. Proc. Natl. Acad. Sci. U.S.A. 2012, 109:E3074-E3083.
-
(2012)
Proc. Natl. Acad. Sci. U.S.A.
, vol.109
, pp. E3074-E3083
-
-
Gorman, J.1
-
110
-
-
79952746781
-
Simultaneous single-molecule measurements of phage T7 replisome composition and function reveal the mechanism of polymerase exchange
-
Loparo J.J., et al. Simultaneous single-molecule measurements of phage T7 replisome composition and function reveal the mechanism of polymerase exchange. Proc. Natl. Acad. Sci. U.S.A. 2011, 108:3584-3589.
-
(2011)
Proc. Natl. Acad. Sci. U.S.A.
, vol.108
, pp. 3584-3589
-
-
Loparo, J.J.1
-
111
-
-
70349748587
-
Barrier-to-autointegration factor (BAF) condenses DNA by looping
-
Skoko D., et al. Barrier-to-autointegration factor (BAF) condenses DNA by looping. Proc. Natl. Acad. Sci. U.S.A. 2009, 106:16610-16615.
-
(2009)
Proc. Natl. Acad. Sci. U.S.A.
, vol.106
, pp. 16610-16615
-
-
Skoko, D.1
|