메뉴 건너뛰기




Volumn , Issue , 2014, Pages 300-309

Batch-mode active learning via error bound minimization

Author keywords

[No Author keywords available]

Indexed keywords

ITERATIVE METHODS; LEARNING SYSTEMS; REGRESSION ANALYSIS; SAMPLING;

EID: 84923270964     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (29)

References (30)
  • 1
    • 84897528650 scopus 로고    scopus 로고
    • Selective sampling algorithms for costsensitive multiclass prediction
    • A. Agarwal. Selective sampling algorithms for costsensitive multiclass prediction. In ICML (3), pages 1220-1228, 2013.
    • (2013) ICML , Issue.3 , pp. 1220-1228
    • Agarwal, A.1
  • 4
    • 85162033329 scopus 로고    scopus 로고
    • Batch bayesian optimization via simulation matching
    • J. Azimi, A. Fern, and X. Fern. Batch bayesian optimization via simulation matching. In NIPS, pages 109-117, 2010.
    • (2010) NIPS , pp. 109-117
    • Azimi, J.1    Fern, A.2    Fern, X.3
  • 6
    • 33750729556 scopus 로고    scopus 로고
    • Manifold regularization: A geometric framework for learning from labeled and unlabeled examples
    • M. Belkin, P. Niyogi, and V. Sindhwani. Manifold regularization: A geometric framework for learning from labeled and unlabeled examples. Journal of Machine Learning Research, 7:2399-2434, 2006.
    • (2006) Journal of Machine Learning Research , vol.7 , pp. 2399-2434
    • Belkin, M.1    Niyogi, P.2    Sindhwani, V.3
  • 7
    • 85161966389 scopus 로고    scopus 로고
    • Agnostic active learning without constraints
    • A. Beygelzimer, D. Hsu, J. Langford, and T. Zhang. Agnostic active learning without constraints. In NIPS, pages 199-207, 2010.
    • (2010) NIPS , pp. 199-207
    • Beygelzimer, A.1    Hsu, D.2    Langford, J.3    Zhang, T.4
  • 11
    • 0028424239 scopus 로고
    • Improving generalization with active learning
    • D. A. Cohn, L. E. Atlas, and R. E. Ladner. Improving generalization with active learning. Machine Learning, 15(2):201-221, 1994.
    • (1994) Machine Learning , vol.15 , Issue.2 , pp. 201-221
    • Cohn, D.A.1    Atlas, L.E.2    Ladner, R.E.3
  • 12
    • 56449123291 scopus 로고    scopus 로고
    • A general agnostic active learning algorithm
    • S. Dasgupta, D. Hsu, and C. Monteleoni. A general agnostic active learning algorithm. In NIPS, 2007.
    • (2007) NIPS
    • Dasgupta, S.1    Hsu, D.2    Monteleoni, C.3
  • 13
    • 0031209604 scopus 로고    scopus 로고
    • Selective sampling using the query by committee algorithm
    • Y. Freund, H. S. Seung, E. Shamir, and N. Tishby. Selective sampling using the query by committee algorithm. Machine Learning, 28(2-3):133-168, 1997.
    • (1997) Machine Learning , vol.28 , Issue.2-3 , pp. 133-168
    • Freund, Y.1    Seung, H.S.2    Shamir, E.3    Tishby, N.4
  • 14
    • 84877789621 scopus 로고    scopus 로고
    • Selective labeling via error bound minimization
    • Q. Gu, T. Zhang, C. H. Q. Ding, and J. Han. Selective labeling via error bound minimization. In NIPS, pages 332-340, 2012.
    • (2012) NIPS , pp. 332-340
    • Gu, Q.1    Zhang, T.2    Ding, C.H.Q.3    Han, J.4
  • 15
    • 84858734050 scopus 로고    scopus 로고
    • Label selection on graphs
    • A. Guillory and J. A. Bilmes. Label selection on graphs. In NIPS, pages 691-699, 2009.
    • (2009) NIPS , pp. 691-699
    • Guillory, A.1    Bilmes, J.A.2
  • 16
    • 85162014861 scopus 로고    scopus 로고
    • Active instance sampling via matrix partition
    • Y. Guo. Active instance sampling via matrix partition. In NIPS, pages 802-810, 2010.
    • (2010) NIPS , pp. 802-810
    • Guo, Y.1
  • 17
    • 79551702937 scopus 로고    scopus 로고
    • Discriminative batch mode active learning
    • Y. Guo and D. Schuurmans. Discriminative batch mode active learning. In NIPS, 2007.
    • (2007) NIPS
    • Guo, Y.1    Schuurmans, D.2
  • 18
    • 79551594780 scopus 로고    scopus 로고
    • Rates of convergence in active learning
    • S. Hanneke. Rates of convergence in active learning. The Annals of Statistics, 39(1):333-361, 2011.
    • (2011) The Annals of Statistics , vol.39 , Issue.1 , pp. 333-361
    • Hanneke, S.1
  • 20
    • 34250745927 scopus 로고    scopus 로고
    • Batch mode active learning and its application to medical image classification
    • S. C. H. Hoi, R. Jin, J. Zhu, and M. R. Lyu. Batch mode active learning and its application to medical image classification. In ICML, pages 417-424, 2006.
    • (2006) ICML , pp. 417-424
    • Hoi, S.C.H.1    Jin, R.2    Zhu, J.3    Lyu, M.R.4
  • 21
    • 51949109425 scopus 로고    scopus 로고
    • Semisupervised svm batch mode active learning for image retrieval
    • S. C. H. Hoi, R. Jin, J. Zhu, and M. R. Lyu. Semisupervised svm batch mode active learning for image retrieval. In CVPR, 2008.
    • (2008) CVPR
    • Hoi, S.C.H.1    Jin, R.2    Zhu, J.3    Lyu, M.R.4
  • 22
    • 85162011798 scopus 로고    scopus 로고
    • Active learning by querying informative and representative examples
    • S.-J. Huang, R. Jin, and Z.-H. Zhou. Active learning by querying informative and representative examples. In NIPS, pages 892-900, 2010.
    • (2010) NIPS , pp. 892-900
    • Huang, S.-J.1    Jin, R.2    Zhou, Z.-H.3
  • 24
    • 41549146576 scopus 로고    scopus 로고
    • Near-optimal sensor placements in gaussian processes: Theory, efficient algorithms and empirical studies
    • A. Krause, A. P. Singh, and C. Guestrin. Near-optimal sensor placements in gaussian processes: Theory, efficient algorithms and empirical studies. Journal of Machine Learning Research, 9:235-284, 2008.
    • (2008) Journal of Machine Learning Research , vol.9 , pp. 235-284
    • Krause, A.1    Singh, A.P.2    Guestrin, C.3
  • 25
    • 77951455815 scopus 로고    scopus 로고
    • High-dimensional ising model selection using 1-regularized logistic regression
    • P. Ravikumar, M. J. Wainwright, and J. D. Lafferty. High-dimensional ising model selection using 1-regularized logistic regression. The Annals of Statistics, 38(3):1287C1319, 2010.
    • (2010) The Annals of Statistics , vol.38 , Issue.3 , pp. 1287C1319
    • Ravikumar, P.1    Wainwright, M.J.2    Lafferty, J.D.3
  • 26
    • 34548168342 scopus 로고    scopus 로고
    • Active learning for logistic regression: An evaluation
    • A. I. Schein and L. H. Ungar. Active learning for logistic regression: An evaluation. Machine Learning, 68(3):235-265, 2007.
    • (2007) Machine Learning , vol.68 , Issue.3 , pp. 235-265
    • Schein, A.I.1    Ungar, L.H.2
  • 27
    • 0003007938 scopus 로고    scopus 로고
    • Support vector machine active learning with applications to text classification
    • S. Tong and D. Koller. Support vector machine active learning with applications to text classification. In ICML, pages 999-1006, 2000.
    • (2000) ICML , pp. 999-1006
    • Tong, S.1    Koller, D.2
  • 28
    • 85016811324 scopus 로고    scopus 로고
    • Querying discriminative and representative samples for batch mode active learning
    • Z. Wang and J. Ye. Querying discriminative and representative samples for batch mode active learning. In KDD, pages 158-166, 2013.
    • (2013) KDD , pp. 158-166
    • Wang, Z.1    Ye, J.2
  • 29
    • 33749265864 scopus 로고    scopus 로고
    • Active learning via transductive experimental design
    • K. Yu, J. Bi, and V. Tresp. Active learning via transductive experimental design. In ICML, pages 1081-1088, 2006.
    • (2006) ICML , pp. 1081-1088
    • Yu, K.1    Bi, J.2    Tresp, V.3
  • 30
    • 0005004572 scopus 로고    scopus 로고
    • A probability analysis on the value of unlabeled data for classification problems
    • T. Zhang and F. J. Oles. A probability analysis on the value of unlabeled data for classification problems. In ICML, 2000.
    • (2000) ICML
    • Zhang, T.1    Oles, F.J.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.