-
1
-
-
84897528650
-
Selective sampling algorithms for costsensitive multiclass prediction
-
A. Agarwal. Selective sampling algorithms for costsensitive multiclass prediction. In ICML (3), pages 1220-1228, 2013.
-
(2013)
ICML
, Issue.3
, pp. 1220-1228
-
-
Agarwal, A.1
-
4
-
-
85162033329
-
Batch bayesian optimization via simulation matching
-
J. Azimi, A. Fern, and X. Fern. Batch bayesian optimization via simulation matching. In NIPS, pages 109-117, 2010.
-
(2010)
NIPS
, pp. 109-117
-
-
Azimi, J.1
Fern, A.2
Fern, X.3
-
6
-
-
33750729556
-
Manifold regularization: A geometric framework for learning from labeled and unlabeled examples
-
M. Belkin, P. Niyogi, and V. Sindhwani. Manifold regularization: A geometric framework for learning from labeled and unlabeled examples. Journal of Machine Learning Research, 7:2399-2434, 2006.
-
(2006)
Journal of Machine Learning Research
, vol.7
, pp. 2399-2434
-
-
Belkin, M.1
Niyogi, P.2
Sindhwani, V.3
-
7
-
-
85161966389
-
Agnostic active learning without constraints
-
A. Beygelzimer, D. Hsu, J. Langford, and T. Zhang. Agnostic active learning without constraints. In NIPS, pages 199-207, 2010.
-
(2010)
NIPS
, pp. 199-207
-
-
Beygelzimer, A.1
Hsu, D.2
Langford, J.3
Zhang, T.4
-
11
-
-
0028424239
-
Improving generalization with active learning
-
D. A. Cohn, L. E. Atlas, and R. E. Ladner. Improving generalization with active learning. Machine Learning, 15(2):201-221, 1994.
-
(1994)
Machine Learning
, vol.15
, Issue.2
, pp. 201-221
-
-
Cohn, D.A.1
Atlas, L.E.2
Ladner, R.E.3
-
12
-
-
56449123291
-
A general agnostic active learning algorithm
-
S. Dasgupta, D. Hsu, and C. Monteleoni. A general agnostic active learning algorithm. In NIPS, 2007.
-
(2007)
NIPS
-
-
Dasgupta, S.1
Hsu, D.2
Monteleoni, C.3
-
13
-
-
0031209604
-
Selective sampling using the query by committee algorithm
-
Y. Freund, H. S. Seung, E. Shamir, and N. Tishby. Selective sampling using the query by committee algorithm. Machine Learning, 28(2-3):133-168, 1997.
-
(1997)
Machine Learning
, vol.28
, Issue.2-3
, pp. 133-168
-
-
Freund, Y.1
Seung, H.S.2
Shamir, E.3
Tishby, N.4
-
14
-
-
84877789621
-
Selective labeling via error bound minimization
-
Q. Gu, T. Zhang, C. H. Q. Ding, and J. Han. Selective labeling via error bound minimization. In NIPS, pages 332-340, 2012.
-
(2012)
NIPS
, pp. 332-340
-
-
Gu, Q.1
Zhang, T.2
Ding, C.H.Q.3
Han, J.4
-
15
-
-
84858734050
-
Label selection on graphs
-
A. Guillory and J. A. Bilmes. Label selection on graphs. In NIPS, pages 691-699, 2009.
-
(2009)
NIPS
, pp. 691-699
-
-
Guillory, A.1
Bilmes, J.A.2
-
16
-
-
85162014861
-
Active instance sampling via matrix partition
-
Y. Guo. Active instance sampling via matrix partition. In NIPS, pages 802-810, 2010.
-
(2010)
NIPS
, pp. 802-810
-
-
Guo, Y.1
-
17
-
-
79551702937
-
Discriminative batch mode active learning
-
Y. Guo and D. Schuurmans. Discriminative batch mode active learning. In NIPS, 2007.
-
(2007)
NIPS
-
-
Guo, Y.1
Schuurmans, D.2
-
18
-
-
79551594780
-
Rates of convergence in active learning
-
S. Hanneke. Rates of convergence in active learning. The Annals of Statistics, 39(1):333-361, 2011.
-
(2011)
The Annals of Statistics
, vol.39
, Issue.1
, pp. 333-361
-
-
Hanneke, S.1
-
19
-
-
0003684449
-
-
New York: Springer-Verlag
-
T. Hastie, R. Tibshirani, and J. H. Friedman. The elements of statistical learning: data mining, inference, and prediction: with 200 full-color illustrations. New York: Springer-Verlag, 2001.
-
(2001)
The Elements of Statistical Learning: Data Mining, Inference, and Prediction: With 200 Full-color Illustrations
-
-
Hastie, T.1
Tibshirani, R.2
Friedman, J.H.3
-
20
-
-
34250745927
-
Batch mode active learning and its application to medical image classification
-
S. C. H. Hoi, R. Jin, J. Zhu, and M. R. Lyu. Batch mode active learning and its application to medical image classification. In ICML, pages 417-424, 2006.
-
(2006)
ICML
, pp. 417-424
-
-
Hoi, S.C.H.1
Jin, R.2
Zhu, J.3
Lyu, M.R.4
-
21
-
-
51949109425
-
Semisupervised svm batch mode active learning for image retrieval
-
S. C. H. Hoi, R. Jin, J. Zhu, and M. R. Lyu. Semisupervised svm batch mode active learning for image retrieval. In CVPR, 2008.
-
(2008)
CVPR
-
-
Hoi, S.C.H.1
Jin, R.2
Zhu, J.3
Lyu, M.R.4
-
22
-
-
85162011798
-
Active learning by querying informative and representative examples
-
S.-J. Huang, R. Jin, and Z.-H. Zhou. Active learning by querying informative and representative examples. In NIPS, pages 892-900, 2010.
-
(2010)
NIPS
, pp. 892-900
-
-
Huang, S.-J.1
Jin, R.2
Zhou, Z.-H.3
-
24
-
-
41549146576
-
Near-optimal sensor placements in gaussian processes: Theory, efficient algorithms and empirical studies
-
A. Krause, A. P. Singh, and C. Guestrin. Near-optimal sensor placements in gaussian processes: Theory, efficient algorithms and empirical studies. Journal of Machine Learning Research, 9:235-284, 2008.
-
(2008)
Journal of Machine Learning Research
, vol.9
, pp. 235-284
-
-
Krause, A.1
Singh, A.P.2
Guestrin, C.3
-
25
-
-
77951455815
-
High-dimensional ising model selection using 1-regularized logistic regression
-
P. Ravikumar, M. J. Wainwright, and J. D. Lafferty. High-dimensional ising model selection using 1-regularized logistic regression. The Annals of Statistics, 38(3):1287C1319, 2010.
-
(2010)
The Annals of Statistics
, vol.38
, Issue.3
, pp. 1287C1319
-
-
Ravikumar, P.1
Wainwright, M.J.2
Lafferty, J.D.3
-
26
-
-
34548168342
-
Active learning for logistic regression: An evaluation
-
A. I. Schein and L. H. Ungar. Active learning for logistic regression: An evaluation. Machine Learning, 68(3):235-265, 2007.
-
(2007)
Machine Learning
, vol.68
, Issue.3
, pp. 235-265
-
-
Schein, A.I.1
Ungar, L.H.2
-
27
-
-
0003007938
-
Support vector machine active learning with applications to text classification
-
S. Tong and D. Koller. Support vector machine active learning with applications to text classification. In ICML, pages 999-1006, 2000.
-
(2000)
ICML
, pp. 999-1006
-
-
Tong, S.1
Koller, D.2
-
28
-
-
85016811324
-
Querying discriminative and representative samples for batch mode active learning
-
Z. Wang and J. Ye. Querying discriminative and representative samples for batch mode active learning. In KDD, pages 158-166, 2013.
-
(2013)
KDD
, pp. 158-166
-
-
Wang, Z.1
Ye, J.2
-
29
-
-
33749265864
-
Active learning via transductive experimental design
-
K. Yu, J. Bi, and V. Tresp. Active learning via transductive experimental design. In ICML, pages 1081-1088, 2006.
-
(2006)
ICML
, pp. 1081-1088
-
-
Yu, K.1
Bi, J.2
Tresp, V.3
-
30
-
-
0005004572
-
A probability analysis on the value of unlabeled data for classification problems
-
T. Zhang and F. J. Oles. A probability analysis on the value of unlabeled data for classification problems. In ICML, 2000.
-
(2000)
ICML
-
-
Zhang, T.1
Oles, F.J.2
|