메뉴 건너뛰기




Volumn 370, Issue , 2015, Pages 171-183

Detecting disease outbreaks using a combined Bayesian network and particle filter approach

Author keywords

Disease surveillance; Epidemics; Plague; Syndromic surveillance

Indexed keywords

BAYESIAN ANALYSIS; DATA MINING; DISEASE INCIDENCE; DISEASE SPREAD; EPIDEMIC; NUMERICAL MODEL; PROBABILITY;

EID: 84923238201     PISSN: 00225193     EISSN: 10958541     Source Type: Journal    
DOI: 10.1016/j.jtbi.2015.01.023     Document Type: Article
Times cited : (34)

References (24)
  • 1
    • 0030502888 scopus 로고    scopus 로고
    • Fitting phase-type distributions via the EM algorithm
    • Asmussen S., Nerman O., Olsson M. Fitting phase-type distributions via the EM algorithm. Scand. J. Stat. 1996, 23(4):419-441.
    • (1996) Scand. J. Stat. , vol.23 , Issue.4 , pp. 419-441
    • Asmussen, S.1    Nerman, O.2    Olsson, M.3
  • 2
    • 29144503264 scopus 로고    scopus 로고
    • Bayesian biosurveillance of disease outbreaks
    • Proceedings of the 20th Conference on Uncertainty in Artificial Intelligence, UAI'04. AUAI Press, Arlington, Virginia, United States.
    • Cooper, G.F., Dash, D.H., Levander, J.D., Wong, W.K., Hogan, W.R., Wagner, M.M., 2004. Bayesian biosurveillance of disease outbreaks. In: Proceedings of the 20th Conference on Uncertainty in Artificial Intelligence, UAI'04. AUAI Press, Arlington, Virginia, United States. pp. 94-103. URL . http://dl.acm.org/citation.cfm?id=1036843.1036855.
    • (2004) , pp. 94-103
    • Cooper, G.F.1    Dash, D.H.2    Levander, J.D.3    Wong, W.K.4    Hogan, W.R.5    Wagner, M.M.6
  • 3
    • 84923255801 scopus 로고    scopus 로고
    • Modelling symptoms of inhalational anthrax and influenza pneumonia for disease surveillance
    • in preparation.
    • Dawson, P., Meehan, A., Aubron, C., Cheng, A., Lau, W., Gailis, R., Pierce, C., 2015. Modelling symptoms of inhalational anthrax and influenza pneumonia for disease surveillance, in preparation.
    • (2015)
    • Dawson, P.1    Meehan, A.2    Aubron, C.3    Cheng, A.4    Lau, W.5    Gailis, R.6    Pierce, C.7
  • 4
    • 84923255800 scopus 로고    scopus 로고
    • Rao-Blackwellised Particle Filtering for Dynamic Bayesian Networks, CoRR abs/1301.3853.
    • Doucet, A., de Freitas, N., Murphy, K.P., Russell, S.J., 2000. Rao-Blackwellised Particle Filtering for Dynamic Bayesian Networks, CoRR abs/1301.3853.
    • (2000)
    • Doucet, A.1    De Freitas, N.2    Murphy, K.P.3    Russell, S.J.4
  • 5
    • 1842588710 scopus 로고    scopus 로고
    • Epidemiologic determinants for modeling pneumonic plague outbreaks
    • Gani R., Leach S. Epidemiologic determinants for modeling pneumonic plague outbreaks. Emerg. Infect. Dis. 2004, 10(4):608-614.
    • (2004) Emerg. Infect. Dis. , vol.10 , Issue.4 , pp. 608-614
    • Gani, R.1    Leach, S.2
  • 6
    • 0027580559 scopus 로고
    • Novel approach to nonlinear non-Gaussian Bayesian state estimation
    • Gordon N., Salmond D., Smith A.F.M. Novel approach to nonlinear non-Gaussian Bayesian state estimation. IEE Proc. F: Radar Signal Process. 1993, 140(2):107-113.
    • (1993) IEE Proc. F: Radar Signal Process. , vol.140 , Issue.2 , pp. 107-113
    • Gordon, N.1    Salmond, D.2    Smith, A.F.M.3
  • 8
    • 84868573319 scopus 로고    scopus 로고
    • A real-time temporal Bayesian architecture for event surveillance and its application to patient-specific multiple disease outbreak detection
    • Jiang X., Cooper G.F. A real-time temporal Bayesian architecture for event surveillance and its application to patient-specific multiple disease outbreak detection. Data Min. Knowl. Discov. 2010, 20(3):328-360. 10.1007/s10618-009-0151-4.
    • (2010) Data Min. Knowl. Discov. , vol.20 , Issue.3 , pp. 328-360
    • Jiang, X.1    Cooper, G.F.2
  • 9
    • 79953801655 scopus 로고    scopus 로고
    • Generalized amoc curves for evaluation and improvement of event surveillance
    • Jiang, X., Cooper, G., Neill, D., 2009. Generalized amoc curves for evaluation and improvement of event surveillance. In: AMIA Annual Symposium Proceedings, pp. 281-285.
    • (2009) AMIA Annual Symposium Proceedings , pp. 281-285
    • Jiang, X.1    Cooper, G.2    Neill, D.3
  • 10
    • 85024429815 scopus 로고
    • A new approach to linear filtering and prediction problems
    • Kalman R.E. A new approach to linear filtering and prediction problems. Trans. ASME-J. Basic Eng. 1960, 82(Series D):35-45. URL http://www.cs.unc.edu/~welch/kalman/media/pdf/Kalman1960.pdf.
    • (1960) Trans. ASME-J. Basic Eng. , vol.82 , Issue.SERIES D , pp. 35-45
    • Kalman, R.E.1
  • 11
    • 0031112046 scopus 로고    scopus 로고
    • The economic impact of a bioterrorist attack. are prevention and postattack intervention programs justifiable?
    • Kaufmann A.F., Meltzer M.I., Schmid G.P. The economic impact of a bioterrorist attack. are prevention and postattack intervention programs justifiable?. Emerg. Infect. Dis. 1997, 3(2):83-94. URL http://view.ncbi.nlm.nih.gov/pubmed/9204289.
    • (1997) Emerg. Infect. Dis. , vol.3 , Issue.2 , pp. 83-94
    • Kaufmann, A.F.1    Meltzer, M.I.2    Schmid, G.P.3
  • 12
    • 84875717708 scopus 로고    scopus 로고
    • Biosurveillance in outbreak investigations
    • using Smart Source Parsing Mar; Epub 2013 Feb 28
    • Kaydos-Daniels S.C., Rojas Smith L., Farris T.R. Biosurveillance in outbreak investigations. Biosecur. Bioterror. 2013, 11(1):20-28. using Smart Source Parsing Mar; Epub 2013 Feb 28. 10.1089/bsp.2011.0109.
    • (2013) Biosecur. Bioterror. , vol.11 , Issue.1 , pp. 20-28
    • Kaydos-Daniels, S.C.1    Rojas Smith, L.2    Farris, T.R.3
  • 13
    • 0030304310 scopus 로고    scopus 로고
    • Monte Carlo filter and smoother for non-Gaussian nonlinear state space models
    • Kitagawa G. Monte Carlo filter and smoother for non-Gaussian nonlinear state space models. J. Comput. Gr. Stat. 1996, 5(1):1-25. 10.2307/1390750.
    • (1996) J. Comput. Gr. Stat. , vol.5 , Issue.1 , pp. 1-25
    • Kitagawa, G.1
  • 15
    • 0013288412 scopus 로고    scopus 로고
    • Dynamic Bayesian Networks: Representation, Inference and Learning
    • (Ph.D. thesis). University of California, Berkeley.
    • Murphy, K., 2002. Dynamic Bayesian Networks: Representation, Inference and Learning (Ph.D. thesis). University of California, Berkeley.
    • (2002)
    • Murphy, K.1
  • 16
    • 84964969871 scopus 로고    scopus 로고
    • Modeling glucose homeostasis and insulin dosing in an intensive care unit using dynamic Bayesian networks
    • Nachimuthu, S.K., Wong, A., Haug, P.J., 2010. Modeling glucose homeostasis and insulin dosing in an intensive care unit using dynamic Bayesian networks. In: AMIA Annual Symposium Proceedings, pp. 532-536. URL . http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3041323/.
    • (2010) AMIA Annual Symposium Proceedings , pp. 532-536
    • Nachimuthu, S.K.1    Wong, A.2    Haug, P.J.3
  • 17
    • 34249065216 scopus 로고    scopus 로고
    • Beyond the Kalman Filter: Particle Filters for Tracking Applications
    • Artech House
    • Ristic B., Arulampalam S., Gordon N. Beyond the Kalman Filter: Particle Filters for Tracking Applications. Artech House radar library 2004, Artech House.
    • (2004) Artech House radar library
    • Ristic, B.1    Arulampalam, S.2    Gordon, N.3
  • 18
    • 35448971114 scopus 로고    scopus 로고
    • Model-consistent estimation of the basic reproduction number from the incidence of an emerging infection
    • Roberts M., Heesterbeek J. Model-consistent estimation of the basic reproduction number from the incidence of an emerging infection. J. Math. Biol. 2007, 55(5-6):803-816. 10.1007/s00285-007-0112-8.
    • (2007) J. Math. Biol. , vol.55 , Issue.5-6 , pp. 803-816
    • Roberts, M.1    Heesterbeek, J.2
  • 19
    • 0001183798 scopus 로고
    • The distribution of incubation periods of infectious disease
    • Sartwell P.E. The distribution of incubation periods of infectious disease. Am. J. Hyg. 1950, 51(3):310-318.
    • (1950) Am. J. Hyg. , vol.51 , Issue.3 , pp. 310-318
    • Sartwell, P.E.1
  • 20
    • 84870859794 scopus 로고    scopus 로고
    • Forecasting seasonal outbreaks of influenza
    • Shaman J., Karspeck A. Forecasting seasonal outbreaks of influenza. Proc. Natl. Acad. Sci. U.S.A. 2012, 109(50):20425-20430. URL http://www.biomedsearch.com/nih/Forecasting-seasonal-outbreaks-influenza/23184969.html.
    • (2012) Proc. Natl. Acad. Sci. U.S.A. , vol.109 , Issue.50 , pp. 20425-20430
    • Shaman, J.1    Karspeck, A.2
  • 21
    • 84864741746 scopus 로고    scopus 로고
    • Monitoring and prediction of an epidemic outbreak using syndromic observations
    • Skvortsov A., Ristic B. Monitoring and prediction of an epidemic outbreak using syndromic observations. Math. Biosci. 2012, 240(1):12-19. 10.1016/j.mbs.2012.05.010.
    • (2012) Math. Biosci. , vol.240 , Issue.1 , pp. 12-19
    • Skvortsov, A.1    Ristic, B.2
  • 24


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.