메뉴 건너뛰기




Volumn 23, Issue 3, 2014, Pages 802-829

Adaptive Bayesian Nonstationary Modeling for Large Spatial Datasets Using Covariance Approximations

Author keywords

Bayesian treed Gaussian process; Full scale approximation; Kernel Convolution; Markov chain Monte Carlo; Reversible jump Markov chain Monte Carlo

Indexed keywords


EID: 84922990179     PISSN: 10618600     EISSN: 15372715     Source Type: Journal    
DOI: 10.1080/10618600.2013.812872     Document Type: Article
Times cited : (44)

References (39)
  • 1
    • 51049107702 scopus 로고    scopus 로고
    • Estimating Deformations of Isotropic Gaussian Random Fields on the Plane
    • Anderes, E.B., and Stein, M.L. (2008), “Estimating Deformations of Isotropic Gaussian Random Fields on the Plane,” The Annals of Statistics, 36, 719–741.
    • (2008) The Annals of Statistics , vol.36 , pp. 719-741
    • Anderes, E.B.1    Stein, M.L.2
  • 2
    • 20744452749 scopus 로고    scopus 로고
    • On Geodetic Distance Computations in Spatial Modeling
    • Banerjee, S. (2005), “On Geodetic Distance Computations in Spatial Modeling,” Biometrics, 61, 617–625.
    • (2005) Biometrics , vol.61 , pp. 617-625
    • Banerjee, S.1
  • 6
    • 38349102465 scopus 로고    scopus 로고
    • A Dynamic Process Convolution Approach to Modeling Ambient Particulate Matter Concentrations
    • Calder, C. (2008), “A Dynamic Process Convolution Approach to Modeling Ambient Particulate Matter Concentrations,” Environmetrics, 19, 39–48.
    • (2008) Environmetrics , vol.19 , pp. 39-48
    • Calder, C.1
  • 9
    • 0000228535 scopus 로고    scopus 로고
    • A Bayesian CART Algorithm
    • Denison, D., Mallick, B., and Smith, A. (1998), “A Bayesian CART Algorithm,” Biometrika, 85, 363–377.
    • (1998) Biometrika , vol.85 , pp. 363-377
    • Denison, D.1    Mallick, B.2    Smith, A.3
  • 11
    • 0034897555 scopus 로고    scopus 로고
    • A High Frequency Kriging Approach for Non-Stationary Environmental Processes
    • Fuentes, M. (2001), “A High Frequency Kriging Approach for Non-Stationary Environmental Processes,” Environmetrics, 12, 469–483.
    • (2001) Environmetrics , vol.12 , pp. 469-483
    • Fuentes, M.1
  • 13
    • 0036858503 scopus 로고    scopus 로고
    • Compactly Supported Correlation Functions
    • Gneiting, T. (2002), “Compactly Supported Correlation Functions,” Journal of Multivariate Analysis, 83, 493–508.
    • (2002) Journal of Multivariate Analysis , vol.83 , pp. 493-508
    • Gneiting, T.1
  • 14
    • 54949111733 scopus 로고    scopus 로고
    • Bayesian Treed Gaussian Process Models With an Application to Computer Modeling
    • Gramacy, R.B., and Lee, H. K.H. (2008), “Bayesian Treed Gaussian Process Models With an Application to Computer Modeling,” Journal of the American Statistical Association, 103, 1119–1130.
    • (2008) Journal of the American Statistical Association , vol.103 , pp. 1119-1130
    • Gramacy, R.B.1    Lee, H.K.H.2
  • 15
    • 77956889087 scopus 로고
    • Reversible Jump Markov Chain Monte Carlo Computation and Bayesian Model Determination
    • Green, P. (1995), “Reversible Jump Markov Chain Monte Carlo Computation and Bayesian Model Determination,” Biometrika, 82, 711–732.
    • (1995) Biometrika , vol.82 , pp. 711-732
    • Green, P.1
  • 16
    • 77957180267 scopus 로고
    • Computing Dirichlet Tessellations in Plane
    • Green, P., and Sibson, R. (1978), “Computing Dirichlet Tessellations in Plane,” Computer Journal, 21, 168–173.
    • (1978) Computer Journal , vol.21 , pp. 168-173
    • Green, P.1    Sibson, R.2
  • 17
    • 83555174652 scopus 로고    scopus 로고
    • Adaptive Gaussian Predictive Process Models for Large Spatial Datasets
    • Guhaniyogi, R., Finley, A., Banerjee, S., and Gelfand, A. (2011), “Adaptive Gaussian Predictive Process Models for Large Spatial Datasets,” Environmetrics, 22, 997–1007.
    • (2011) Environmetrics , vol.22 , pp. 997-1007
    • Guhaniyogi, R.1    Finley, A.2    Banerjee, S.3    Gelfand, A.4
  • 18
    • 0032422974 scopus 로고    scopus 로고
    • A Process-Convolution Approach to Modeling Temperatures in the North Atlantic Ocean
    • Higdon, D. (1998), “A Process-Convolution Approach to Modeling Temperatures in the North Atlantic Ocean,” Journal of Environmental and Ecological Statistics, 5, 173–190.
    • (1998) Journal of Environmental and Ecological Statistics , vol.5 , pp. 173-190
    • Higdon, D.1
  • 19
    • 84925964424 scopus 로고    scopus 로고
    • “Non-Stationary Spatial Modeling,” in Bayesian Statistics 6: Proceedings of the Sixth Valencia International Meeting, Oxford University Press, UK
    • Higdon, D.M., Swall, J., and Kern, J.C. (2011), “Non-Stationary Spatial Modeling,” in Bayesian Statistics 6: Proceedings of the Sixth Valencia International Meeting, Oxford University Press, UK.
    • (2011)
    • Higdon, D.M.1    Swall, J.2    Kern, J.C.3
  • 20
    • 0001351522 scopus 로고
    • Topics in Spatial Statistics” (with discussion, comments and rejoinder)
    • Hjort, N., and Omre, H. (1994), “Topics in Spatial Statistics” (with discussion, comments and rejoinder), Scandinavian Journal of Statistics, 289–357.
    • (1994) Scandinavian Journal of Statistics , pp. 289-357
    • Hjort, N.1    Omre, H.2
  • 21
    • 78751616255 scopus 로고    scopus 로고
    • Nonstationary Covariance Models for Global Data
    • Jun, M., and Stein, M.L. (2008), “Nonstationary Covariance Models for Global Data,” Annals of Applied Statistics, 2, 1271–1289.
    • (2008) Annals of Applied Statistics , vol.2 , pp. 1271-1289
    • Jun, M.1    Stein, M.L.2
  • 22
    • 70049091991 scopus 로고    scopus 로고
    • Covariance Tapering for Likelihood-Based Estimation in Large Spatial Data Sets
    • Kaufman, C., Schervish, M., and Nychka, D. (2008), “Covariance Tapering for Likelihood-Based Estimation in Large Spatial Data Sets,” Journal of the American Statistical Association, 103, 1545–1555.
    • (2008) Journal of the American Statistical Association , vol.103 , pp. 1545-1555
    • Kaufman, C.1    Schervish, M.2    Nychka, D.3
  • 25
    • 0345959413 scopus 로고
    • Technical Report, Institute of Statistics and Decision Sciences, Duke University
    • Mueller, P. (1993), “Alternatives to the Gibbs Sampling Scheme,”. Technical Report, Institute of Statistics and Decision Sciences, Duke University.
    • (1993) “Alternatives to the Gibbs Sampling Scheme,”
    • Mueller, P.1
  • 26
    • 84993734384 scopus 로고    scopus 로고
    • Multiresolution Models for Nonstationary Spatial Covariance Functions
    • Nychka, D., and Royle, C. W. K. A. (2002), “Multiresolution Models for Nonstationary Spatial Covariance Functions,” Statistical Modelling, 2, 315–332.
    • (2002) Statistical Modelling , vol.2 , pp. 315-332
    • Nychka, D.1    Royle, C.W.K.A.2
  • 27
    • 33745999511 scopus 로고    scopus 로고
    • Spatial Modelling Using a New Class of Nonstationary Covariance Functions
    • Paciorek, C., and Schervish, M. (2006), “Spatial Modelling Using a New Class of Nonstationary Covariance Functions,” Environmetrics, 17, 483–506.
    • (2006) Environmetrics , vol.17 , pp. 483-506
    • Paciorek, C.1    Schervish, M.2
  • 28
    • 0000832522 scopus 로고
    • Nonparametric Estimation of Nonstationary Spatial Covariance Structure
    • Sampson, P.D., and Guttorp, P. (1992), “Nonparametric Estimation of Nonstationary Spatial Covariance Structure,” Journal of the American Statistical Association, 87, 108–119.
    • (1992) Journal of the American Statistical Association , vol.87 , pp. 108-119
    • Sampson, P.D.1    Guttorp, P.2
  • 29
    • 84856008847 scopus 로고    scopus 로고
    • A Full-Scale Approximation of Covariance Functions for Large Spatial Data Sets
    • Sang, H., and Huang, J.Z. (2012), “A Full-Scale Approximation of Covariance Functions for Large Spatial Data Sets,” Journal of the Royal Statistical Society, Series B, 74, 19–741.
    • (2012) Journal of the Royal Statistical Society, Series B , vol.74 , pp. 19-741
    • Sang, H.1    Huang, J.Z.2
  • 31
    • 0042171731 scopus 로고    scopus 로고
    • Bayesian Inference for Non-Stationary Spatial Covariance Structure via Spatial Deformations
    • Schmidt, A.M., and O’Hagan, A. (2003), “Bayesian Inference for Non-Stationary Spatial Covariance Structure via Spatial Deformations,” Journal of the Royal Statistical Society, Series B, 65, 743–758.
    • (2003) Journal of the Royal Statistical Society, Series B , vol.65 , pp. 743-758
    • Schmidt, A.M.1    O’Hagan, A.2
  • 33
    • 84925964423 scopus 로고    scopus 로고
    • “Environmental Statistics,” Technical Report, Department of Statistics, University of North Carolina, Chapel Hill
    • Smith, R. (2001),. “Environmental Statistics,” Technical Report, Department of Statistics, University of North Carolina, Chapel Hill.
    • (2001)
    • Smith, R.1
  • 36
    • 41249085244 scopus 로고    scopus 로고
    • Spatial Variation of Total Column Ozone on a Global Scale
    • Stein, M.L. (2007), “Spatial Variation of Total Column Ozone on a Global Scale,” Annals of Applied Statistics, I, 191–210.
    • (2007) Annals of Applied Statistics , vol.1 , pp. 191-210
    • Stein, M.L.1
  • 37
    • 37849010186 scopus 로고    scopus 로고
    • A Modeling Approach for Large Spatial Datasets
    • Stein, M.L. (2008), “A Modeling Approach for Large Spatial Datasets,” Journal of the Korean Statistical Society, 37, 3–10.
    • (2008) Journal of the Korean Statistical Society , vol.37 , pp. 3-10
    • Stein, M.L.1
  • 38
    • 33750626862 scopus 로고    scopus 로고
    • Atlantic Hurricanes and Natural Variability in 2005
    • Trenberth, K.E., and Shea, D.J. (2005), “Atlantic Hurricanes and Natural Variability in 2005,” Geophysical Research Letters, 33, L12704.
    • (2005) Geophysical Research Letters , vol.33 , pp. 12704
    • Trenberth, K.E.1    Shea, D.J.2
  • 39
    • 0000764217 scopus 로고    scopus 로고
    • Error Estimates for Interpolation by Compactly Supported Radial Basis Functions of Minimal Degree
    • Wendland, H. (1998), “Error Estimates for Interpolation by Compactly Supported Radial Basis Functions of Minimal Degree,” Journal of Approximation Theory, 93, 258–272.
    • (1998) Journal of Approximation Theory , vol.93 , pp. 258-272
    • Wendland, H.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.