-
1
-
-
34548100943
-
Multi-classifier systems: Review and a roadmap for developers
-
R. Ranawana Multi-classifier systems: review and a roadmap for developers Int. J. Hybrid Intell. Syst. 3 2006 35 61
-
(2006)
Int. J. Hybrid Intell. Syst.
, vol.3
, pp. 35-61
-
-
Ranawana, R.1
-
2
-
-
80053403826
-
Ensemble Methods in Machine Learning
-
Sci., Springer, Berlin Heidelberg
-
T.G. Dietterich, Ensemble Methods in Machine Learning, in: Mult. Classif. Syst. Lect. Notes Comput. Sci., Springer, Berlin Heidelberg, 2000, pp. 1-15.
-
(2000)
Mult. Classif. Syst. Lect. Notes Comput
, pp. 1-15
-
-
Dietterich, T.G.1
-
3
-
-
10444221886
-
Diversity creation methods: A survey and categorisation
-
G. Brown, J. Wyatt, R. Harris, and X. Yao Diversity creation methods: a survey and categorisation Inf. Fusion. 6 2005 5 20
-
(2005)
Inf. Fusion.
, vol.6
, pp. 5-20
-
-
Brown, G.1
Wyatt, J.2
Harris, R.3
Yao, X.4
-
4
-
-
0026692226
-
Stacked generalization
-
D. Wolpert Stacked generalization Neural Networks 5 1992 241 259
-
(1992)
Neural Networks
, vol.5
, pp. 241-259
-
-
Wolpert, D.1
-
5
-
-
28344448004
-
Methods for Combining Heterogeneous Sets of Classifiers
-
Work. New Res. Probl. Mach. Learn
-
D. Bahler, L. Navarro, Methods for Combining Heterogeneous Sets of Classifiers, in: Proc. the17th Natl. Conf. Artif. Intell. Work. New Res. Probl. Mach. Learn., 2000.
-
(2000)
Proc. The17th Natl. Conf. Artif. Intell
-
-
Bahler, D.1
Navarro, L.2
-
7
-
-
0001698980
-
Backpropagation is sensitive to initial conditions
-
J.F. Kolen, and J.B. Pollack Backpropagation is sensitive to initial conditions Complex Syst. 4 1990 269 280
-
(1990)
Complex Syst.
, vol.4
, pp. 269-280
-
-
Kolen, J.F.1
Pollack, J.B.2
-
8
-
-
0034250160
-
An experimental comparison of three methods for constructing ensembles of decision trees: Bagging, boosting, and randomization
-
T.G. Dietterich An experimental comparison of three methods for constructing ensembles of decision trees: bagging, boosting, and randomization Mach. Learn. 40 2000 139 157
-
(2000)
Mach. Learn.
, vol.40
, pp. 139-157
-
-
Dietterich, T.G.1
-
9
-
-
0003500248
-
-
San Francisco, CA, USA
-
J. Quinlan, C4.5: Programs for Machine Learning, Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 1993.
-
(1993)
C4.5: Programs for Machine Learning, Morgan Kaufmann Publishers Inc.
-
-
Quinlan, J.1
-
10
-
-
0031361611
-
Machine-learning research: Four current directions
-
T.G. Dietterich Machine-learning research: four current directions AI Mag. 18 1997 97 137
-
(1997)
AI Mag.
, vol.18
, pp. 97-137
-
-
Dietterich, T.G.1
-
11
-
-
0030211964
-
Bagging predictors
-
L. Breiman Bagging predictors Mach. Learn. 24 1996 123 140
-
(1996)
Mach. Learn.
, vol.24
, pp. 123-140
-
-
Breiman, L.1
-
12
-
-
0025448521
-
The strength of weak learnability
-
R.E. Schapire The strength of weak learnability Mach. Learn. 5 1990 197 227
-
(1990)
Mach. Learn.
, vol.5
, pp. 197-227
-
-
Schapire, R.E.1
-
13
-
-
0032139235
-
The random subspace method for constructing decision forests
-
T.K. Ho The random subspace method for constructing decision forests IEEE Trans. Pattern Anal. Mach. Intell. 20 1998 832 844
-
(1998)
IEEE Trans. Pattern Anal. Mach. Intell.
, vol.20
, pp. 832-844
-
-
Ho, T.K.1
-
15
-
-
0142086622
-
A methodology for feature selection using multi-objective genetic algorithms for handwritten digit string recognition
-
L.S. Oliveira, R. Sabourin, F. Bortolozzi, and C.Y. Suen A methodology for feature selection using multi-objective genetic algorithms for handwritten digit string recognition Int. J. Pattern Recognit. Artif. Intell. 17 2003 903 929
-
(2003)
Int. J. Pattern Recognit. Artif. Intell.
, vol.17
, pp. 903-929
-
-
Oliveira, L.S.1
Sabourin, R.2
Bortolozzi, F.3
Suen, C.Y.4
-
16
-
-
10444238133
-
Diversity in search strategies for ensemble feature selection
-
A. Tsymbal, M. Pechenizkiy, and P. Cunningham Diversity in search strategies for ensemble feature selection Inf. Fusion. 6 2005 83 98
-
(2005)
Inf. Fusion.
, vol.6
, pp. 83-98
-
-
Tsymbal, A.1
Pechenizkiy, M.2
Cunningham, P.3
-
17
-
-
0242515926
-
Attribute bagging: Improving accuracy of classifier ensembles by using random feature subsets
-
R. Bryll, R. Gutierrez-Osuna, and F. Quek Attribute bagging: improving accuracy of classifier ensembles by using random feature subsets Pattern Recognit. 36 2003 1291 1302
-
(2003)
Pattern Recognit.
, vol.36
, pp. 1291-1302
-
-
Bryll, R.1
Gutierrez-Osuna, R.2
Quek, F.3
-
19
-
-
0027698884
-
An improved algorithm for neural network classification of imbalanced training sets
-
R. Anand, K.G. Mehrotra, C.K. Mohan, and S. Ranka An improved algorithm for neural network classification of imbalanced training sets IEEE Trans. Neural Networks 4 1993 962 969
-
(1993)
IEEE Trans. Neural Networks
, vol.4
, pp. 962-969
-
-
Anand, R.1
Mehrotra, K.G.2
Mohan, C.K.3
Ranka, S.4
-
20
-
-
0032355984
-
Classification by Pairwise coupling
-
T. Hastie, and R. Tibshirani Classification by Pairwise coupling Ann. Stat. 6 1998 451 471
-
(1998)
Ann. Stat.
, vol.6
, pp. 451-471
-
-
Hastie, T.1
Tibshirani, R.2
-
21
-
-
33749240206
-
Multi-class pattern classification using neural networks
-
G. Ou, and Y.L. Murphey Multi-class pattern classification using neural networks Pattern Recognit. 40 2007 4 18
-
(2007)
Pattern Recognit.
, vol.40
, pp. 4-18
-
-
Ou, G.1
Murphey, Y.L.2
-
22
-
-
0000406788
-
Solving multiclass learning problems via error-correcting output codes
-
T.G. Dietterich, and G. Bakiri Solving multiclass learning problems via error-correcting output codes J. Artif. Intell. Res. 2 1995 263 286
-
(1995)
J. Artif. Intell. Res.
, vol.2
, pp. 263-286
-
-
Dietterich, T.G.1
Bakiri, G.2
-
23
-
-
51749105657
-
OAHO: An Effective Algorithm for Multi-Class Learning from Imbalanced Data
-
Y.L. Murphey, H. Wang, G. Ou, OAHO: An Effective Algorithm for Multi-Class Learning from Imbalanced Data, in: Proc. Int. Jt. Conf. Neural Networks, 2007, pp. 406-411.
-
(2007)
Proc. Int. Jt. Conf. Neural Networks
, pp. 406-411
-
-
Murphey, Y.L.1
Wang, H.2
Ou, G.3
-
24
-
-
0029183827
-
Efficient classification for multiclass problems using modular neural networks
-
R. Anand, K. Mehrotra, C.K. Mohan, and S. Ranka Efficient classification for multiclass problems using modular neural networks IEEE Trans. Neural Networks 6 1995 117 124
-
(1995)
IEEE Trans. Neural Networks
, vol.6
, pp. 117-124
-
-
Anand, R.1
Mehrotra, K.2
Mohan, C.K.3
Ranka, S.4
-
25
-
-
24044435942
-
Reducing multiclass to binary: A unifying approach for margin classifiers
-
E.L. Allwein, R.E. Schapire, and Y. Singer Reducing multiclass to binary: a unifying approach for margin classifiers J. Mach. Learn. Res. 1 2000 113 141
-
(2000)
J. Mach. Learn. Res.
, vol.1
, pp. 113-141
-
-
Allwein, E.L.1
Schapire, R.E.2
Singer, Y.3
-
26
-
-
0036859210
-
Learning in the multiple class random neural network
-
E. Gelenbe, and K.F. Hussain Learning in the multiple class random neural network IEEE Trans. Neural Networks 13 2002 1257 1267
-
(2002)
IEEE Trans. Neural Networks
, vol.13
, pp. 1257-1267
-
-
Gelenbe, E.1
Hussain, K.F.2
-
28
-
-
84865092329
-
Multiclass Classification using Neural Networks and Interval Neutrosophic Sets
-
Cybern., Venice
-
P. Kraipeerapun, C. Fung, K. Wong, Multiclass Classification using Neural Networks and Interval Neutrosophic Sets, in: Proc. 5th WSEAS Int. Conf. Comput. Intell. Man-Machine Sist. Cybern., Venice, 2006, pp. 123-128.
-
(2006)
Proc. 5th WSEAS Int. Conf. Comput. Intell. Man-Machine Sist
, pp. 123-128
-
-
Kraipeerapun, P.1
Fung, C.2
Wong, K.3
-
29
-
-
37549015273
-
Comparing combination rules of Pairwise neural networks classifiers
-
O. Lézoray, and H. Cardot Comparing combination rules of Pairwise neural networks classifiers Neural Process. Lett. 27 2008 43 56
-
(2008)
Neural Process. Lett.
, vol.27
, pp. 43-56
-
-
Lézoray, O.1
Cardot, H.2
-
30
-
-
78650572282
-
An empirical study of binary classifier fusion methods for multiclass classification
-
N. García-Pedrajas, and D. Ortiz-Boyer An empirical study of binary classifier fusion methods for multiclass classification Inf. Fusion. 12 2011 111 130
-
(2011)
Inf. Fusion.
, vol.12
, pp. 111-130
-
-
García-Pedrajas, N.1
Ortiz-Boyer, D.2
-
31
-
-
79953051509
-
An overview of ensemble methods for binary classifiers in multi-class problems: Experimental study on one-vs-one and one-vs-all schemes
-
M. Galar, A. Fernández, E. Barrenechea, H. Bustince, and F. Herrera An overview of ensemble methods for binary classifiers in multi-class problems: experimental study on one-vs-one and one-vs-all schemes Pattern Recognit. 44 2011 1761 1776
-
(2011)
Pattern Recognit.
, vol.44
, pp. 1761-1776
-
-
Galar, M.1
Fernández, A.2
Barrenechea, E.3
Bustince, H.4
Herrera, F.5
-
32
-
-
84857123524
-
Isa, one-against-all ensemble for multiclass pattern classification
-
T.H. Oong, and N.A. Mat Isa, one-against-all ensemble for multiclass pattern classification Appl. Soft Comput. 12 2012 1303 1308
-
(2012)
Appl. Soft Comput.
, vol.12
, pp. 1303-1308
-
-
Oong, T.H.1
Mat, N.A.2
-
33
-
-
84861189306
-
A new artificial neural network ensemble based on feature selection and class recoding
-
M.P. Sesmero, J.M. Alonso-Weber, G. Gutiérrez, A. Ledezma, and A. Sanchis A new artificial neural network ensemble based on feature selection and class recoding Neural Comput. Appl. 21 2012 771 783
-
(2012)
Neural Comput. Appl.
, vol.21
, pp. 771-783
-
-
Sesmero, M.P.1
Alonso-Weber, J.M.2
Gutiérrez, G.3
Ledezma, A.4
Sanchis, A.5
-
34
-
-
33745561205
-
An introduction to variable and feature selection
-
I. Iguyon, and A. Elisseeff An introduction to variable and feature selection J. Mach. Learn. Res. 3 2003 1157 1182
-
(2003)
J. Mach. Learn. Res.
, vol.3
, pp. 1157-1182
-
-
Iguyon, I.1
Elisseeff, A.2
-
36
-
-
17044405923
-
Toward integrating feature selection algorithms for classification and clustering
-
H. Liu, and L. Yu Toward integrating feature selection algorithms for classification and clustering IEEE Trans. Knowl. Data Eng. 17 2005 491 502
-
(2005)
IEEE Trans. Knowl. Data Eng.
, vol.17
, pp. 491-502
-
-
Liu, H.1
Yu, L.2
-
37
-
-
84880930604
-
Is mutual information adequate for feature selection in regression?
-
B. Frénay, G. Doquire, and M. Verleysen Is mutual information adequate for feature selection in regression? Neural Networks 48 2013 1 7
-
(2013)
Neural Networks
, vol.48
, pp. 1-7
-
-
Frénay, B.1
Doquire, G.2
Verleysen, M.3
-
38
-
-
84866052116
-
Unsupervised Feature Selection for Linked Social Media Data
-
Data Min., ACM, New York, NY, USA
-
J. Tang, H. Liu, Unsupervised Feature Selection for Linked Social Media Data, in: Proc. 18th ACM SIGKDD Int. Conf. Knowl. Discov. Data Min., ACM, New York, NY, USA, 2012, pp. 904-912.
-
(2012)
Proc. 18th ACM SIGKDD Int. Conf. Knowl. Discov
, pp. 904-912
-
-
Tang, J.1
Liu, H.2
-
39
-
-
0028468293
-
Using mutual information for selecting features in supervised neural net learning
-
R. Battiti Using mutual information for selecting features in supervised neural net learning Neural Networks, IEEE Trans. 5 1994 537 550
-
(1994)
Neural Networks, IEEE Trans.
, vol.5
, pp. 537-550
-
-
Battiti, R.1
-
40
-
-
85099325734
-
Irrelevant Features and the Subset Selection Problem
-
G.H. John, R. Kohavi, K. Pfleger, Irrelevant Features and the Subset Selection Problem, in: Mach. Learn. Proc. Elev. Int. Conf., Morgan Kaufmann, 1994, pp. 121-129.
-
(1994)
Mach. Learn. Proc. Elev. Int. Conf., Morgan Kaufmann
, pp. 121-129
-
-
John, G.H.1
Kohavi, R.2
Pfleger, K.3
-
44
-
-
38049176947
-
Testing Feature Selection in Traffic Signs
-
M.P. Sesmero, J.M. Alonso-Weber, G. Gutierrez, A. Ledezma, A. Sanchis, Testing Feature Selection in Traffic Signs, in: Proc. 11th Int. Conf. Comput. Aided Syst. Theory - EUROCAST 2007, 2007, pp. 396-398.
-
(2007)
Proc. 11th Int. Conf. Comput. Aided Syst. Theory - EUROCAST 2007
, pp. 396-398
-
-
Sesmero, M.P.1
Alonso-Weber, J.M.2
Gutierrez, G.3
Ledezma, A.4
Sanchis, A.5
-
45
-
-
0024175265
-
Best First Strategy for Feature Selection
-
L. Xu, P. Yan, T. Chang, Best First Strategy for Feature Selection, in: 9th Int. Conf. Pattern Recognit., 1988, pp. 706-708.
-
(1988)
9th Int. Conf. Pattern Recognit
, pp. 706-708
-
-
Xu, L.1
Yan, P.2
Chang, T.3
-
47
-
-
0000646059
-
Learning Internal Representations by Error Propagation
-
D.E.R. James, L. McClelland
-
D.E. Rumelhart, G.E. Hinton, R.J. Williams, Learning Internal Representations by Error Propagation, in: D.E.R. James, L. McClelland (Eds.), Parallel Distrib. Process. Explor. Microstruct. Cogn., 1985, pp. 318-362.
-
(1985)
Parallel Distrib. Process. Explor. Microstruct. Cogn
, pp. 318-362
-
-
Rumelhart, D.E.1
Hinton, G.E.2
Williams, R.J.3
-
48
-
-
35348915328
-
Classifier ensembles: Select real-world applications
-
N.C. Oza, and K. Tumer Classifier ensembles: select real-world applications Inf. Fusion. 9 2008 4 20
-
(2008)
Inf. Fusion.
, vol.9
, pp. 4-20
-
-
Oza, N.C.1
Tumer, K.2
-
49
-
-
79955641166
-
UCI Machine Learning Repository, Univ
-
A. Frank, A. Asuncion, UCI Machine Learning Repository, Univ. California, Irvine, Sch. Inf. Comput. Sci., 2010.
-
(2010)
California, Irvine, Sch. Inf. Comput. Sci
-
-
Frank, A.1
Asuncion, A.2
-
50
-
-
55549103698
-
KEEL: A software tool to assess evolutionary algorithms for data mining problems
-
J. Alcalá-Fdez, L. Sánchez, S. García, S. Ventura, J.M. Garrell, and J. Otero KEEL: a software tool to assess evolutionary algorithms for data mining problems Soft. Comput. 13 2009 307 318
-
(2009)
Soft. Comput.
, vol.13
, pp. 307-318
-
-
Alcalá-Fdez, J.1
Sánchez, L.2
García, S.3
Ventura, S.4
Garrell, J.M.5
Otero, J.6
-
53
-
-
0034313673
-
Neural networks for classification: A survey, IEEE Trans
-
G. Zhang Neural networks for classification: a survey, IEEE Trans Syst. Man, Cybern. Appl. Rev. 30 2000 451 462
-
(2000)
Syst. Man, Cybern. Appl. Rev.
, vol.30
, pp. 451-462
-
-
Zhang, G.1
-
54
-
-
0031277930
-
Classification of imbalanced remote-sensing data by neural networks
-
L. Bruzzone, and S.B. Serpico Classification of imbalanced remote-sensing data by neural networks Pattern Recognit. Lett. 18 1997 1323 1328
-
(1997)
Pattern Recognit. Lett.
, vol.18
, pp. 1323-1328
-
-
Bruzzone, L.1
Serpico, S.B.2
-
55
-
-
33744584654
-
Induction of decision trees
-
J. Quinlan Induction of decision trees Mach. Learn. 1 1986 81 106
-
(1986)
Mach. Learn.
, vol.1
, pp. 81-106
-
-
Quinlan, J.1
-
56
-
-
0000551189
-
Popular ensemble methods: An empirical study
-
D. Optiz, and R. Maclin Popular ensemble methods: an empirical study J. Artif. Intell. Res. 11 1999 169 198
-
(1999)
J. Artif. Intell. Res.
, vol.11
, pp. 169-198
-
-
Optiz, D.1
Maclin, R.2
-
58
-
-
0033570831
-
Combined 5×2 cv F Test for comparing supervised classification learning algorithms
-
E. Alpaydin Combined 5×2 cv F Test for comparing supervised classification learning algorithms Neural Comput. 11 1999 1885 1892
-
(1999)
Neural Comput.
, vol.11
, pp. 1885-1892
-
-
Alpaydin, E.1
-
59
-
-
0000259511
-
Approximate statistical tests for comparing supervised classification learning algorithms
-
T.G. Dietterich Approximate statistical tests for comparing supervised classification learning algorithms Neural Comput. 10 1998 1895 1923
-
(1998)
Neural Comput.
, vol.10
, pp. 1895-1923
-
-
Dietterich, T.G.1
-
61
-
-
0002017152
-
Ten Measures of Diversity in Classifier Ensembles: Limits for Two Classifiers
-
L.I. Kuncheva, C.J. Whitaker, Ten Measures of Diversity in Classifier Ensembles: Limits for Two Classifiers, in: Proc. IEEE Work. Intell. Sens., 2001, pp. 10/1-10/10.
-
(2001)
Proc. IEEE Work. Intell. Sens
, pp. 10/1-10/10
-
-
Kuncheva, L.I.1
Whitaker, C.J.2
-
62
-
-
0037403516
-
Measures of diversity in classifier ensembles and their relationship with the ensemble accuracy
-
L.I. Kuncheva, and C.J. Whitaker Measures of diversity in classifier ensembles and their relationship with the ensemble accuracy Mach. Learn. 51 2003 181 207
-
(2003)
Mach. Learn.
, vol.51
, pp. 181-207
-
-
Kuncheva, L.I.1
Whitaker, C.J.2
-
64
-
-
0036609602
-
Relationships between combination methods and measures of diversity in combining classifiers
-
C.A. Shipp, and L.I. Kuncheva Relationships between combination methods and measures of diversity in combining classifiers Inf. Fusion. 3 2002 135 148
-
(2002)
Inf. Fusion.
, vol.3
, pp. 135-148
-
-
Shipp, C.A.1
Kuncheva, L.I.2
|