메뉴 건너뛰기




Volumn 24, Issue , 2015, Pages 122-136

An ensemble approach of dual base learners for multi-class classification problems

Author keywords

Artificial Neural Networks; Diversity; Ensemble of classifiers; Feature Selection; Multi class classification

Indexed keywords

CLASSIFIERS; FEATURE EXTRACTION; LEARNING SYSTEMS; NEURAL NETWORKS;

EID: 84922842596     PISSN: 15662535     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.inffus.2014.09.002     Document Type: Article
Times cited : (24)

References (65)
  • 1
    • 34548100943 scopus 로고    scopus 로고
    • Multi-classifier systems: Review and a roadmap for developers
    • R. Ranawana Multi-classifier systems: review and a roadmap for developers Int. J. Hybrid Intell. Syst. 3 2006 35 61
    • (2006) Int. J. Hybrid Intell. Syst. , vol.3 , pp. 35-61
    • Ranawana, R.1
  • 2
    • 80053403826 scopus 로고    scopus 로고
    • Ensemble Methods in Machine Learning
    • Sci., Springer, Berlin Heidelberg
    • T.G. Dietterich, Ensemble Methods in Machine Learning, in: Mult. Classif. Syst. Lect. Notes Comput. Sci., Springer, Berlin Heidelberg, 2000, pp. 1-15.
    • (2000) Mult. Classif. Syst. Lect. Notes Comput , pp. 1-15
    • Dietterich, T.G.1
  • 3
    • 10444221886 scopus 로고    scopus 로고
    • Diversity creation methods: A survey and categorisation
    • G. Brown, J. Wyatt, R. Harris, and X. Yao Diversity creation methods: a survey and categorisation Inf. Fusion. 6 2005 5 20
    • (2005) Inf. Fusion. , vol.6 , pp. 5-20
    • Brown, G.1    Wyatt, J.2    Harris, R.3    Yao, X.4
  • 4
    • 0026692226 scopus 로고
    • Stacked generalization
    • D. Wolpert Stacked generalization Neural Networks 5 1992 241 259
    • (1992) Neural Networks , vol.5 , pp. 241-259
    • Wolpert, D.1
  • 5
    • 28344448004 scopus 로고    scopus 로고
    • Methods for Combining Heterogeneous Sets of Classifiers
    • Work. New Res. Probl. Mach. Learn
    • D. Bahler, L. Navarro, Methods for Combining Heterogeneous Sets of Classifiers, in: Proc. the17th Natl. Conf. Artif. Intell. Work. New Res. Probl. Mach. Learn., 2000.
    • (2000) Proc. The17th Natl. Conf. Artif. Intell
    • Bahler, D.1    Navarro, L.2
  • 7
    • 0001698980 scopus 로고
    • Backpropagation is sensitive to initial conditions
    • J.F. Kolen, and J.B. Pollack Backpropagation is sensitive to initial conditions Complex Syst. 4 1990 269 280
    • (1990) Complex Syst. , vol.4 , pp. 269-280
    • Kolen, J.F.1    Pollack, J.B.2
  • 8
    • 0034250160 scopus 로고    scopus 로고
    • An experimental comparison of three methods for constructing ensembles of decision trees: Bagging, boosting, and randomization
    • T.G. Dietterich An experimental comparison of three methods for constructing ensembles of decision trees: bagging, boosting, and randomization Mach. Learn. 40 2000 139 157
    • (2000) Mach. Learn. , vol.40 , pp. 139-157
    • Dietterich, T.G.1
  • 10
    • 0031361611 scopus 로고    scopus 로고
    • Machine-learning research: Four current directions
    • T.G. Dietterich Machine-learning research: four current directions AI Mag. 18 1997 97 137
    • (1997) AI Mag. , vol.18 , pp. 97-137
    • Dietterich, T.G.1
  • 11
    • 0030211964 scopus 로고    scopus 로고
    • Bagging predictors
    • L. Breiman Bagging predictors Mach. Learn. 24 1996 123 140
    • (1996) Mach. Learn. , vol.24 , pp. 123-140
    • Breiman, L.1
  • 12
    • 0025448521 scopus 로고
    • The strength of weak learnability
    • R.E. Schapire The strength of weak learnability Mach. Learn. 5 1990 197 227
    • (1990) Mach. Learn. , vol.5 , pp. 197-227
    • Schapire, R.E.1
  • 13
    • 0032139235 scopus 로고    scopus 로고
    • The random subspace method for constructing decision forests
    • T.K. Ho The random subspace method for constructing decision forests IEEE Trans. Pattern Anal. Mach. Intell. 20 1998 832 844
    • (1998) IEEE Trans. Pattern Anal. Mach. Intell. , vol.20 , pp. 832-844
    • Ho, T.K.1
  • 15
    • 0142086622 scopus 로고    scopus 로고
    • A methodology for feature selection using multi-objective genetic algorithms for handwritten digit string recognition
    • L.S. Oliveira, R. Sabourin, F. Bortolozzi, and C.Y. Suen A methodology for feature selection using multi-objective genetic algorithms for handwritten digit string recognition Int. J. Pattern Recognit. Artif. Intell. 17 2003 903 929
    • (2003) Int. J. Pattern Recognit. Artif. Intell. , vol.17 , pp. 903-929
    • Oliveira, L.S.1    Sabourin, R.2    Bortolozzi, F.3    Suen, C.Y.4
  • 16
    • 10444238133 scopus 로고    scopus 로고
    • Diversity in search strategies for ensemble feature selection
    • A. Tsymbal, M. Pechenizkiy, and P. Cunningham Diversity in search strategies for ensemble feature selection Inf. Fusion. 6 2005 83 98
    • (2005) Inf. Fusion. , vol.6 , pp. 83-98
    • Tsymbal, A.1    Pechenizkiy, M.2    Cunningham, P.3
  • 17
    • 0242515926 scopus 로고    scopus 로고
    • Attribute bagging: Improving accuracy of classifier ensembles by using random feature subsets
    • R. Bryll, R. Gutierrez-Osuna, and F. Quek Attribute bagging: improving accuracy of classifier ensembles by using random feature subsets Pattern Recognit. 36 2003 1291 1302
    • (2003) Pattern Recognit. , vol.36 , pp. 1291-1302
    • Bryll, R.1    Gutierrez-Osuna, R.2    Quek, F.3
  • 19
    • 0027698884 scopus 로고
    • An improved algorithm for neural network classification of imbalanced training sets
    • R. Anand, K.G. Mehrotra, C.K. Mohan, and S. Ranka An improved algorithm for neural network classification of imbalanced training sets IEEE Trans. Neural Networks 4 1993 962 969
    • (1993) IEEE Trans. Neural Networks , vol.4 , pp. 962-969
    • Anand, R.1    Mehrotra, K.G.2    Mohan, C.K.3    Ranka, S.4
  • 20
    • 0032355984 scopus 로고    scopus 로고
    • Classification by Pairwise coupling
    • T. Hastie, and R. Tibshirani Classification by Pairwise coupling Ann. Stat. 6 1998 451 471
    • (1998) Ann. Stat. , vol.6 , pp. 451-471
    • Hastie, T.1    Tibshirani, R.2
  • 21
    • 33749240206 scopus 로고    scopus 로고
    • Multi-class pattern classification using neural networks
    • G. Ou, and Y.L. Murphey Multi-class pattern classification using neural networks Pattern Recognit. 40 2007 4 18
    • (2007) Pattern Recognit. , vol.40 , pp. 4-18
    • Ou, G.1    Murphey, Y.L.2
  • 22
    • 0000406788 scopus 로고
    • Solving multiclass learning problems via error-correcting output codes
    • T.G. Dietterich, and G. Bakiri Solving multiclass learning problems via error-correcting output codes J. Artif. Intell. Res. 2 1995 263 286
    • (1995) J. Artif. Intell. Res. , vol.2 , pp. 263-286
    • Dietterich, T.G.1    Bakiri, G.2
  • 23
    • 51749105657 scopus 로고    scopus 로고
    • OAHO: An Effective Algorithm for Multi-Class Learning from Imbalanced Data
    • Y.L. Murphey, H. Wang, G. Ou, OAHO: An Effective Algorithm for Multi-Class Learning from Imbalanced Data, in: Proc. Int. Jt. Conf. Neural Networks, 2007, pp. 406-411.
    • (2007) Proc. Int. Jt. Conf. Neural Networks , pp. 406-411
    • Murphey, Y.L.1    Wang, H.2    Ou, G.3
  • 24
    • 0029183827 scopus 로고
    • Efficient classification for multiclass problems using modular neural networks
    • R. Anand, K. Mehrotra, C.K. Mohan, and S. Ranka Efficient classification for multiclass problems using modular neural networks IEEE Trans. Neural Networks 6 1995 117 124
    • (1995) IEEE Trans. Neural Networks , vol.6 , pp. 117-124
    • Anand, R.1    Mehrotra, K.2    Mohan, C.K.3    Ranka, S.4
  • 25
    • 24044435942 scopus 로고    scopus 로고
    • Reducing multiclass to binary: A unifying approach for margin classifiers
    • E.L. Allwein, R.E. Schapire, and Y. Singer Reducing multiclass to binary: a unifying approach for margin classifiers J. Mach. Learn. Res. 1 2000 113 141
    • (2000) J. Mach. Learn. Res. , vol.1 , pp. 113-141
    • Allwein, E.L.1    Schapire, R.E.2    Singer, Y.3
  • 26
    • 0036859210 scopus 로고    scopus 로고
    • Learning in the multiple class random neural network
    • E. Gelenbe, and K.F. Hussain Learning in the multiple class random neural network IEEE Trans. Neural Networks 13 2002 1257 1267
    • (2002) IEEE Trans. Neural Networks , vol.13 , pp. 1257-1267
    • Gelenbe, E.1    Hussain, K.F.2
  • 29
    • 37549015273 scopus 로고    scopus 로고
    • Comparing combination rules of Pairwise neural networks classifiers
    • O. Lézoray, and H. Cardot Comparing combination rules of Pairwise neural networks classifiers Neural Process. Lett. 27 2008 43 56
    • (2008) Neural Process. Lett. , vol.27 , pp. 43-56
    • Lézoray, O.1    Cardot, H.2
  • 30
    • 78650572282 scopus 로고    scopus 로고
    • An empirical study of binary classifier fusion methods for multiclass classification
    • N. García-Pedrajas, and D. Ortiz-Boyer An empirical study of binary classifier fusion methods for multiclass classification Inf. Fusion. 12 2011 111 130
    • (2011) Inf. Fusion. , vol.12 , pp. 111-130
    • García-Pedrajas, N.1    Ortiz-Boyer, D.2
  • 31
    • 79953051509 scopus 로고    scopus 로고
    • An overview of ensemble methods for binary classifiers in multi-class problems: Experimental study on one-vs-one and one-vs-all schemes
    • M. Galar, A. Fernández, E. Barrenechea, H. Bustince, and F. Herrera An overview of ensemble methods for binary classifiers in multi-class problems: experimental study on one-vs-one and one-vs-all schemes Pattern Recognit. 44 2011 1761 1776
    • (2011) Pattern Recognit. , vol.44 , pp. 1761-1776
    • Galar, M.1    Fernández, A.2    Barrenechea, E.3    Bustince, H.4    Herrera, F.5
  • 32
    • 84857123524 scopus 로고    scopus 로고
    • Isa, one-against-all ensemble for multiclass pattern classification
    • T.H. Oong, and N.A. Mat Isa, one-against-all ensemble for multiclass pattern classification Appl. Soft Comput. 12 2012 1303 1308
    • (2012) Appl. Soft Comput. , vol.12 , pp. 1303-1308
    • Oong, T.H.1    Mat, N.A.2
  • 34
    • 33745561205 scopus 로고    scopus 로고
    • An introduction to variable and feature selection
    • I. Iguyon, and A. Elisseeff An introduction to variable and feature selection J. Mach. Learn. Res. 3 2003 1157 1182
    • (2003) J. Mach. Learn. Res. , vol.3 , pp. 1157-1182
    • Iguyon, I.1    Elisseeff, A.2
  • 36
    • 17044405923 scopus 로고    scopus 로고
    • Toward integrating feature selection algorithms for classification and clustering
    • H. Liu, and L. Yu Toward integrating feature selection algorithms for classification and clustering IEEE Trans. Knowl. Data Eng. 17 2005 491 502
    • (2005) IEEE Trans. Knowl. Data Eng. , vol.17 , pp. 491-502
    • Liu, H.1    Yu, L.2
  • 37
    • 84880930604 scopus 로고    scopus 로고
    • Is mutual information adequate for feature selection in regression?
    • B. Frénay, G. Doquire, and M. Verleysen Is mutual information adequate for feature selection in regression? Neural Networks 48 2013 1 7
    • (2013) Neural Networks , vol.48 , pp. 1-7
    • Frénay, B.1    Doquire, G.2    Verleysen, M.3
  • 38
    • 84866052116 scopus 로고    scopus 로고
    • Unsupervised Feature Selection for Linked Social Media Data
    • Data Min., ACM, New York, NY, USA
    • J. Tang, H. Liu, Unsupervised Feature Selection for Linked Social Media Data, in: Proc. 18th ACM SIGKDD Int. Conf. Knowl. Discov. Data Min., ACM, New York, NY, USA, 2012, pp. 904-912.
    • (2012) Proc. 18th ACM SIGKDD Int. Conf. Knowl. Discov , pp. 904-912
    • Tang, J.1    Liu, H.2
  • 39
    • 0028468293 scopus 로고
    • Using mutual information for selecting features in supervised neural net learning
    • R. Battiti Using mutual information for selecting features in supervised neural net learning Neural Networks, IEEE Trans. 5 1994 537 550
    • (1994) Neural Networks, IEEE Trans. , vol.5 , pp. 537-550
    • Battiti, R.1
  • 48
    • 35348915328 scopus 로고    scopus 로고
    • Classifier ensembles: Select real-world applications
    • N.C. Oza, and K. Tumer Classifier ensembles: select real-world applications Inf. Fusion. 9 2008 4 20
    • (2008) Inf. Fusion. , vol.9 , pp. 4-20
    • Oza, N.C.1    Tumer, K.2
  • 53
    • 0034313673 scopus 로고    scopus 로고
    • Neural networks for classification: A survey, IEEE Trans
    • G. Zhang Neural networks for classification: a survey, IEEE Trans Syst. Man, Cybern. Appl. Rev. 30 2000 451 462
    • (2000) Syst. Man, Cybern. Appl. Rev. , vol.30 , pp. 451-462
    • Zhang, G.1
  • 54
    • 0031277930 scopus 로고    scopus 로고
    • Classification of imbalanced remote-sensing data by neural networks
    • L. Bruzzone, and S.B. Serpico Classification of imbalanced remote-sensing data by neural networks Pattern Recognit. Lett. 18 1997 1323 1328
    • (1997) Pattern Recognit. Lett. , vol.18 , pp. 1323-1328
    • Bruzzone, L.1    Serpico, S.B.2
  • 55
    • 33744584654 scopus 로고
    • Induction of decision trees
    • J. Quinlan Induction of decision trees Mach. Learn. 1 1986 81 106
    • (1986) Mach. Learn. , vol.1 , pp. 81-106
    • Quinlan, J.1
  • 56
    • 0000551189 scopus 로고    scopus 로고
    • Popular ensemble methods: An empirical study
    • D. Optiz, and R. Maclin Popular ensemble methods: an empirical study J. Artif. Intell. Res. 11 1999 169 198
    • (1999) J. Artif. Intell. Res. , vol.11 , pp. 169-198
    • Optiz, D.1    Maclin, R.2
  • 58
    • 0033570831 scopus 로고    scopus 로고
    • Combined 5×2 cv F Test for comparing supervised classification learning algorithms
    • E. Alpaydin Combined 5×2 cv F Test for comparing supervised classification learning algorithms Neural Comput. 11 1999 1885 1892
    • (1999) Neural Comput. , vol.11 , pp. 1885-1892
    • Alpaydin, E.1
  • 59
    • 0000259511 scopus 로고    scopus 로고
    • Approximate statistical tests for comparing supervised classification learning algorithms
    • T.G. Dietterich Approximate statistical tests for comparing supervised classification learning algorithms Neural Comput. 10 1998 1895 1923
    • (1998) Neural Comput. , vol.10 , pp. 1895-1923
    • Dietterich, T.G.1
  • 61
    • 0002017152 scopus 로고    scopus 로고
    • Ten Measures of Diversity in Classifier Ensembles: Limits for Two Classifiers
    • L.I. Kuncheva, C.J. Whitaker, Ten Measures of Diversity in Classifier Ensembles: Limits for Two Classifiers, in: Proc. IEEE Work. Intell. Sens., 2001, pp. 10/1-10/10.
    • (2001) Proc. IEEE Work. Intell. Sens , pp. 10/1-10/10
    • Kuncheva, L.I.1    Whitaker, C.J.2
  • 62
    • 0037403516 scopus 로고    scopus 로고
    • Measures of diversity in classifier ensembles and their relationship with the ensemble accuracy
    • L.I. Kuncheva, and C.J. Whitaker Measures of diversity in classifier ensembles and their relationship with the ensemble accuracy Mach. Learn. 51 2003 181 207
    • (2003) Mach. Learn. , vol.51 , pp. 181-207
    • Kuncheva, L.I.1    Whitaker, C.J.2
  • 64
    • 0036609602 scopus 로고    scopus 로고
    • Relationships between combination methods and measures of diversity in combining classifiers
    • C.A. Shipp, and L.I. Kuncheva Relationships between combination methods and measures of diversity in combining classifiers Inf. Fusion. 3 2002 135 148
    • (2002) Inf. Fusion. , vol.3 , pp. 135-148
    • Shipp, C.A.1    Kuncheva, L.I.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.