메뉴 건너뛰기




Volumn 38, Issue 2, 2015, Pages 172-183

Opportunities for improved distribution modelling practice via a strict maximum likelihood interpretation of MaxEnt

Author keywords

[No Author keywords available]

Indexed keywords

SCORZONERA HUMILIS;

EID: 84922649495     PISSN: 09067590     EISSN: 16000587     Source Type: Journal    
DOI: 10.1111/ecog.00565     Document Type: Article
Times cited : (65)

References (59)
  • 1
    • 79959735518 scopus 로고    scopus 로고
    • Species-specific tuning increases robustness to sampling bias in models of species distributions: an implementation with Maxent
    • Anderson, R. P. and Gonzalez, I. J. 2011. Species-specific tuning increases robustness to sampling bias in models of species distributions: an implementation with Maxent. - Ecol. Model. 222: 2796-2811.
    • (2011) Ecol. Model , vol.222 , pp. 2796-2811
    • Anderson, R.P.1    Gonzalez, I.J.2
  • 2
    • 84855906002 scopus 로고    scopus 로고
    • A simple post-hoc method to add spatial context to predictive species distribution models
    • Ashcroft, M. B. et al. 2012. A simple post-hoc method to add spatial context to predictive species distribution models. - Ecol. Model. 228: 17-26.
    • (2012) Ecol. Model , vol.228 , pp. 17-26
    • Ashcroft, M.B.1
  • 3
    • 84922642651 scopus 로고    scopus 로고
    • Videreføring av prediksjonsmodellering av invaderende fremmede arter
    • Auestad, I. et al. 2012. Videreføring av prediksjonsmodellering av invaderende fremmede arter. - Dir. Naturforv. Utredn. 6: 1-38.
    • (2012) Dir. Naturforv. Utredn , vol.6 , pp. 1-38
    • Auestad, I.1
  • 4
    • 33847675260 scopus 로고    scopus 로고
    • Species distribution models and ecological theory: a critical assessment and some possible new approaches
    • Austin, M. 2007. Species distribution models and ecological theory: a critical assessment and some possible new approaches. - Ecol. Model. 200: 1-19.
    • (2007) Ecol. Model , vol.200 , pp. 1-19
    • Austin, M.1
  • 5
    • 54549102367 scopus 로고    scopus 로고
    • Forward selection of explanatory variables
    • Blanchet, F. G. et al. 2008. Forward selection of explanatory variables. - Ecology 89: 2623-2632.
    • (2008) Ecology , vol.89 , pp. 2623-2632
    • Blanchet, F.G.1
  • 6
    • 0026499092 scopus 로고
    • Partialling out the spatial component of ecological variation
    • Borcard, D. et al. 1992. Partialling out the spatial component of ecological variation. - Ecology 73: 1045-1055.
    • (1992) Ecology , vol.73 , pp. 1045-1055
    • Borcard, D.1
  • 7
    • 77952291939 scopus 로고    scopus 로고
    • Climate change increases risk of plant invasion in the eastern United States
    • Bradley, B. A. et al. 2010. Climate change increases risk of plant invasion in the eastern United States. - Biol. Invasions 12: 1855-1872.
    • (2010) Biol. Invasions , vol.12 , pp. 1855-1872
    • Bradley, B.A.1
  • 9
    • 84858760490 scopus 로고    scopus 로고
    • Generative and discriminative learning with unknown labeling bias
    • Dudík, M. and Phillips, S. J. 2009. Generative and discriminative learning with unknown labeling bias. - Adv. Neural Inform. Process. Syst. 21: 401-408.
    • (2009) Adv. Neural Inform. Process. Syst , vol.21 , pp. 401-408
    • Dudík, M.1    Phillips, S.J.2
  • 10
    • 34250663051 scopus 로고    scopus 로고
    • Maximum entropy density estimation with generalized regularization and an application to species distribution modeling
    • Dudík, M. et al. 2007. Maximum entropy density estimation with generalized regularization and an application to species distribution modeling. - J. Mach. Learn. Res. 8: 1217-1260.
    • (2007) J. Mach. Learn. Res , vol.8 , pp. 1217-1260
    • Dudík, M.1
  • 11
    • 80052474579 scopus 로고    scopus 로고
    • A fine-grained spatial prediction model for the red-listed vascular plant Scorzonera humilis
    • Edvardsen, A. et al. 2011. A fine-grained spatial prediction model for the red-listed vascular plant Scorzonera humilis. - Nord. J. Bot. 29: 495-504.
    • (2011) Nord. J. Bot , vol.29 , pp. 495-504
    • Edvardsen, A.1
  • 12
    • 18444415493 scopus 로고    scopus 로고
    • Model-based stratifications for enhancing the detection of rare ecological events
    • Edwards, T. C. Jr et al. 2005. Model-based stratifications for enhancing the detection of rare ecological events. - Ecology 86: 1081-1090.
    • (2005) Ecology , vol.86 , pp. 1081-1090
    • Edwards Jr, T.C.1
  • 13
    • 33750012330 scopus 로고    scopus 로고
    • Effects of sample survey design on the accuracy of classification tree models in species distribution models
    • Edwards T. C. Jr et al. 2006. Effects of sample survey design on the accuracy of classification tree models in species distribution models. - Ecol. Model. 199: 132-141.
    • (2006) Ecol. Model , vol.199 , pp. 132-141
    • Edwards Jr, T.C.1
  • 14
    • 33645917058 scopus 로고    scopus 로고
    • Novel methods improve prediction of species' distributions from occurrence data
    • Elith, J. et al. 2006. Novel methods improve prediction of species' distributions from occurrence data. - Ecography 29: 129-151.
    • (2006) Ecography , vol.29 , pp. 129-151
    • Elith, J.1
  • 15
    • 78649991963 scopus 로고    scopus 로고
    • A statistical explanation of MaxEnt for ecologists
    • Elith, J. et al. 2011. A statistical explanation of MaxEnt for ecologists. - Divers. Distrib. 17: 43-57.
    • (2011) Divers. Distrib , vol.17 , pp. 43-57
    • Elith, J.1
  • 16
    • 84875287237 scopus 로고    scopus 로고
    • Impact of scale and quality of digital terrain models on predictability of seabed terrain types
    • Erikstad, L. et al. 2013. Impact of scale and quality of digital terrain models on predictability of seabed terrain types. - Mar. Geod. 36: 2-21.
    • (2013) Mar. Geod , vol.36 , pp. 2-21
    • Erikstad, L.1
  • 17
    • 0030953391 scopus 로고    scopus 로고
    • A review of methods for the assessment of prediction errors in conservation presence-absence models
    • Fielding, A. H. and Bell, J. E. 1997. A review of methods for the assessment of prediction errors in conservation presence-absence models. - Environ. Conserv. 24: 38-49.
    • (1997) Environ. Conserv , vol.24 , pp. 38-49
    • Fielding, A.H.1    Bell, J.E.2
  • 19
    • 0034610199 scopus 로고    scopus 로고
    • Predictive habitat distribution models in ecology
    • Guisan, A. and Zimmermann, N. E. 2000. Predictive habitat distribution models in ecology. - Ecol. Model. 135: 147-186.
    • (2000) Ecol. Model , vol.135 , pp. 147-186
    • Guisan, A.1    Zimmermann, N.E.2
  • 20
    • 84886746505 scopus 로고    scopus 로고
    • A gradient analytic perspective on distribution modelling
    • Halvorsen, R. 2012. A gradient analytic perspective on distribution modelling. - Sommerfeltia 35: 1-165.
    • (2012) Sommerfeltia , vol.35 , pp. 1-165
    • Halvorsen, R.1
  • 21
    • 84897765115 scopus 로고    scopus 로고
    • A strict maximum likelihood explanation of MaxEnt, and some implications for distribution modelling
    • Halvorsen, R. 2013. A strict maximum likelihood explanation of MaxEnt, and some implications for distribution modelling. - Sommerfeltia 36: 1-132.
    • (2013) Sommerfeltia , vol.36 , pp. 1-132
    • Halvorsen, R.1
  • 22
    • 0030069896 scopus 로고    scopus 로고
    • Multivariate prognostic models: issues in developing models, evaluating assumptions and adequacy, and measuring and reducing errors
    • Harrell, F. E. et al. 1996. Multivariate prognostic models: issues in developing models, evaluating assumptions and adequacy, and measuring and reducing errors. - Stat. Med. 15: 361-387.
    • (1996) Stat. Med , vol.15 , pp. 361-387
    • Harrell, F.E.1
  • 24
    • 84860230931 scopus 로고    scopus 로고
    • Species distribution modelling with R. - The R foundation for statistical computing
    • Hijmans, R. J. and Elith, J. 2011. Species distribution modelling with R. - The R foundation for statistical computing, .
    • (2011)
    • Hijmans, R.J.1    Elith, J.2
  • 25
    • 33750006271 scopus 로고    scopus 로고
    • Evaluating the ability of habitat suitability models to predict species presences
    • Hirzel, A. H. et al. 2006. Evaluating the ability of habitat suitability models to predict species presences. - Ecol. Model. 199: 142-152.
    • (2006) Ecol. Model , vol.199 , pp. 142-152
    • Hirzel, A.H.1
  • 26
    • 11944266539 scopus 로고
    • Information theory and statistical mechanics
    • Jaynes, E. T. 1957a. Information theory and statistical mechanics. - Phys. Rev. 106: 620-630.
    • (1957) Phys. Rev , vol.106 , pp. 620-630
    • Jaynes, E.T.1
  • 27
    • 11944275853 scopus 로고
    • Information theory and statistical mechanics. II
    • Jaynes, E. T. 1957b. Information theory and statistical mechanics. II. - Phys. Rev. 108: 171-190.
    • (1957) Phys. Rev , vol.108 , pp. 171-190
    • Jaynes, E.T.1
  • 28
    • 84859837703 scopus 로고    scopus 로고
    • Less than eight (and a half) misconceptions of spatial analysis
    • Kühn, I. and Dormann, C. F. 2012. Less than eight (and a half) misconceptions of spatial analysis. - J. Biogeogr. 39: 995-998.
    • (2012) J. Biogeogr , vol.39 , pp. 995-998
    • Kühn, I.1    Dormann, C.F.2
  • 30
    • 48849108583 scopus 로고    scopus 로고
    • Phylogeography and predicted distribution of African-Arabian and Malagasy populations of giant mastiff bats, Otomops spp. (Chiroptera: Molossidae)
    • Lamb, J. M. et al. 2008. Phylogeography and predicted distribution of African-Arabian and Malagasy populations of giant mastiff bats, Otomops spp. (Chiroptera: Molossidae). - Acta Chiropterol. 10: 21-40.
    • (2008) Acta Chiropterol , vol.10 , pp. 21-40
    • Lamb, J.M.1
  • 31
    • 84883414289 scopus 로고    scopus 로고
    • Using ecological niche models to infer distribution and population size of parakeets in New Caledonia
    • Legault, A. et al. 2013. Using ecological niche models to infer distribution and population size of parakeets in New Caledonia. - Biol. Conserv. 167: 149-160.
    • (2013) Biol. Conserv , vol.167 , pp. 149-160
    • Legault, A.1
  • 33
    • 83055179750 scopus 로고    scopus 로고
    • Can we model the probability of presence of species without absence data?
    • Li, W. et al. 2011. Can we model the probability of presence of species without absence data? - Ecography 34: 1096-1105.
    • (2011) Ecography , vol.34 , pp. 1096-1105
    • Li, W.1
  • 34
    • 77953929268 scopus 로고    scopus 로고
    • The uncertain nature of absences and their importance in species distribution modelling
    • Lobo, J. M. et al. 2010. The uncertain nature of absences and their importance in species distribution modelling. - Ecography 33: 103-114.
    • (2010) Ecography , vol.33 , pp. 103-114
    • Lobo, J.M.1
  • 35
    • 84884702154 scopus 로고    scopus 로고
    • A practical guide to MaxEnt for modeling species' distributions: what it does, and why inputs and settings matter
    • Merow, C. et al. 2013. A practical guide to MaxEnt for modeling species' distributions: what it does, and why inputs and settings matter. - Ecography 36: 1058-1069.
    • (2013) Ecography , vol.36 , pp. 1058-1069
    • Merow, C.1
  • 36
    • 0026359098 scopus 로고
    • Digital terrain modeling: a review of hydrological, geomorphological, and biological applications
    • Moore, I. D. et al. 1991. Digital terrain modeling: a review of hydrological, geomorphological, and biological applications. - Hydrol. Processes 5: 3-30.
    • (1991) Hydrol. Processes , vol.5 , pp. 3-30
    • Moore, I.D.1
  • 37
    • 77955139714 scopus 로고    scopus 로고
    • Testing the accuracy of species distribution models using species records from a new field survey
    • Newbold, T. et al. 2010. Testing the accuracy of species distribution models using species records from a new field survey. - Oikos 119: 1326-1334.
    • (2010) Oikos , vol.119 , pp. 1326-1334
    • Newbold, T.1
  • 38
    • 0033083558 scopus 로고    scopus 로고
    • On the variation explained by ordination and constrained ordination axes
    • Økland, R. H. 1999. On the variation explained by ordination and constrained ordination axes. - J. Veg. Sci. 10: 131-136.
    • (1999) J. Veg. Sci , vol.10 , pp. 131-136
    • Økland, R.H.1
  • 39
    • 0242340403 scopus 로고    scopus 로고
    • Partitioning the variation in a plot-by-species data matrix that is related to n sets of explanatory variables
    • Økland, R. H. 2003. Partitioning the variation in a plot-by-species data matrix that is related to n sets of explanatory variables. - J. Veg. Sci. 14: 693-700.
    • (2003) J. Veg. Sci , vol.14 , pp. 693-700
    • Økland, R.H.1
  • 40
    • 0003262026 scopus 로고    scopus 로고
    • Vegetation-environment relationships of boreal spruce swamp forests in Østmarka Nature Reserve, SE Norway
    • Økland, R. H. et al. 2001. Vegetation-environment relationships of boreal spruce swamp forests in Østmarka Nature Reserve, SE Norway. - Sommerfeltia 29: 1-190.
    • (2001) Sommerfeltia , vol.29 , pp. 1-190
    • Økland, R.H.1
  • 41
    • 0033831709 scopus 로고    scopus 로고
    • Evaluating the predictive performance of habitat models developed using logistic regression
    • Pearce, J. L. and Ferrier, S. 2000. Evaluating the predictive performance of habitat models developed using logistic regression. - Ecol. Model. 133: 225-245.
    • (2000) Ecol. Model , vol.133 , pp. 225-245
    • Pearce, J.L.1    Ferrier, S.2
  • 42
    • 84867345122 scopus 로고    scopus 로고
    • Ecological niches and geographic distributions
    • Peterson, A. T. et al. 2011. Ecological niches and geographic distributions. - Monogr. Popul. Biol. 49: 1-314.
    • (2011) Monogr. Popul. Biol , vol.49 , pp. 1-314
    • Peterson, A.T.1
  • 44
    • 84860612628 scopus 로고    scopus 로고
    • Inferring prevalence from presence-only data: a response to 'Can we model the probability of presence of species without absence data?'
    • Phillips, S. 2012. Inferring prevalence from presence-only data: a response to 'Can we model the probability of presence of species without absence data?'. - Ecography 35: 385-387.
    • (2012) Ecography , vol.35 , pp. 385-387
    • Phillips, S.1
  • 45
    • 41449100102 scopus 로고    scopus 로고
    • Modeling of species distributions with Maxent: new extensions and a comprehensive evaluation
    • Phillips, S. J. and Dudík, M. 2008. Modeling of species distributions with Maxent: new extensions and a comprehensive evaluation. - Ecography 31: 161-175.
    • (2008) Ecography , vol.31 , pp. 161-175
    • Phillips, S.J.1    Dudík, M.2
  • 46
    • 84879580140 scopus 로고    scopus 로고
    • On estimating probability of presence from use-availability or presence-background data
    • Phillips, S. J. and Elith, J. 2013. On estimating probability of presence from use-availability or presence-background data. - Ecology 94: 1409-1419.
    • (2013) Ecology , vol.94 , pp. 1409-1419
    • Phillips, S.J.1    Elith, J.2
  • 47
    • 14344261668 scopus 로고    scopus 로고
    • A maximum entropy approach to species distribution modeling
    • Anon. (ed.), Proceedings of the 21st international conference on machine learning. ACM Press
    • Phillips, S. J. et al. 2004. A maximum entropy approach to species distribution modeling. - In: Anon (ed.), Proceedings of the 21st international conference on machine learning. ACM Press, pp. 655-662.
    • (2004) , pp. 655-662
    • Phillips, S.J.1
  • 48
    • 27944446350 scopus 로고    scopus 로고
    • Maximum entropy modeling of species geographic distributions
    • Phillips, S. J. et al. 2006. Maximum entropy modeling of species geographic distributions. - Ecol. Model. 190: 231-259.
    • (2006) Ecol. Model , vol.190 , pp. 231-259
    • Phillips, S.J.1
  • 49
    • 63849333773 scopus 로고    scopus 로고
    • Sample selection bias and presence-only distribution models: implications for background and pseudo-absence data
    • Phillips, S. J. et al. 2009. Sample selection bias and presence-only distribution models: implications for background and pseudo-absence data. - Ecol. Appl. 19: 181-197.
    • (2009) Ecol. Appl , vol.19 , pp. 181-197
    • Phillips, S.J.1
  • 50
    • 32644490007 scopus 로고    scopus 로고
    • Constrain to perform: regularization of habitat models
    • Reineking, B. and Schröder, B. 2006. Constrain to perform: regularization of habitat models. - Ecol. Model. 193: 675-690.
    • (2006) Ecol. Model , vol.193 , pp. 675-690
    • Reineking, B.1    Schröder, B.2
  • 51
    • 84875940984 scopus 로고    scopus 로고
    • Equivalence of MAXENT and poisson point process models for species distribution modeling in ecology
    • Renner, I. W. and Warton, D. I. 2013. Equivalence of MAXENT and poisson point process models for species distribution modeling in ecology. - Biometrics 69: 274-281.
    • (2013) Biometrics , vol.69 , pp. 274-281
    • Renner, I.W.1    Warton, D.I.2
  • 52
    • 84863982602 scopus 로고    scopus 로고
    • Likelihood analysis of species occurrence probability from presence-only data for modelling species distributions
    • Royle, J. A. et al. 2012. Likelihood analysis of species occurrence probability from presence-only data for modelling species distributions. - Method. Ecol. Evol. 3: 545-554.
    • (2012) Method. Ecol. Evol , vol.3 , pp. 545-554
    • Royle, J.A.1
  • 53
    • 0001287271 scopus 로고    scopus 로고
    • Regression shrinkage and selection via the lasso
    • Tibshirani, R. 1996. Regression shrinkage and selection via the lasso. - J. R. Stat. Soc. B 58: 267-288.
    • (1996) J. R. Stat. Soc. B , vol.58 , pp. 267-288
    • Tibshirani, R.1
  • 54
    • 70449732203 scopus 로고    scopus 로고
    • Spatially autocorrelated sampling falsely inflates measures of accuracy for presence-only niche models
    • Veloz, S. D. 2009. Spatially autocorrelated sampling falsely inflates measures of accuracy for presence-only niche models. - J. Biogeogr. 36: 2290-2299.
    • (2009) J. Biogeogr , vol.36 , pp. 2290-2299
    • Veloz, S.D.1
  • 55
    • 79955545366 scopus 로고    scopus 로고
    • Ecological niche modeling in Maxent: the importance of model complexity and the performance of model selection criteria
    • Warren, D. L. and Seifert, S. N. 2011. Ecological niche modeling in Maxent: the importance of model complexity and the performance of model selection criteria. - Ecol. Appl. 21: 335-342.
    • (2011) Ecol. Appl , vol.21 , pp. 335-342
    • Warren, D.L.1    Seifert, S.N.2
  • 56
    • 77955243011 scopus 로고    scopus 로고
    • ENMTools: a toolbox for comparative studies of environmental niche models
    • Warren, D. L. et al. 2010. ENMTools: a toolbox for comparative studies of environmental niche models. - Ecography 33: 607-611.
    • (2010) Ecography , vol.33 , pp. 607-611
    • Warren, D.L.1
  • 57
    • 73949100096 scopus 로고    scopus 로고
    • Niches, models, and climate change: assessing the assumptions and uncertainties
    • Wiens, J. A. et al. 2009. Niches, models, and climate change: assessing the assumptions and uncertainties. - Proc. Natl Acad. Sci. USA 106: 19729-19736.
    • (2009) Proc. Natl Acad. Sci. USA , vol.106 , pp. 19729-19736
    • Wiens, J.A.1
  • 58
    • 56549129741 scopus 로고    scopus 로고
    • Modelling and predicting fungal distribution patterns using herbarium data
    • Wollan, A. K. et al. 2008. Modelling and predicting fungal distribution patterns using herbarium data. - J. Biogeogr. 35: 2298-2310.
    • (2008) J. Biogeogr , vol.35 , pp. 2298-2310
    • Wollan, A.K.1
  • 59
    • 84875232665 scopus 로고    scopus 로고
    • Presence-only modelling using MAXENT: when can we trust the inferences
    • Yackulic, C. B. et al. 2013. Presence-only modelling using MAXENT: when can we trust the inferences. - Method. Ecol. Evol. 4: 236-243.
    • (2013) Method. Ecol. Evol , vol.4 , pp. 236-243
    • Yackulic, C.B.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.