메뉴 건너뛰기




Volumn 16, Issue 1, 2015, Pages 71-81

Brain tumor segmentation based on a hybrid clustering technique

Author keywords

Brain tumor segmentation; Expectation Maximization; Fuzzy C means; K means clustering; Medical image segmentation

Indexed keywords

BRAIN; CLUSTER ANALYSIS; COPYING; FUZZY CLUSTERING; FUZZY SYSTEMS; K-MEANS CLUSTERING; MAXIMUM PRINCIPLE; MEDICAL IMAGE PROCESSING; MEDICAL IMAGING; TEXTURES; TUMORS;

EID: 84922570626     PISSN: 11108665     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.eij.2015.01.003     Document Type: Article
Times cited : (374)

References (37)
  • 1
    • 84997446335 scopus 로고    scopus 로고
    • Image segmentation for tumor detection using fuzzy inference system
    • V. Janani, and P. Meena Image segmentation for tumor detection using fuzzy inference system Int J Comput Sci Mobile Comput (IJCSMC) 2 5 2013 244 248
    • (2013) Int J Comput Sci Mobile Comput (IJCSMC) , vol.2 , Issue.5 , pp. 244-248
    • Janani, V.1    Meena, P.2
  • 2
    • 77955697138 scopus 로고    scopus 로고
    • Frame based segmentation for medical images
    • B. Dong, A. Chien, and Z. SHEN Frame based segmentation for medical images Commun Math Sci 32 4 2010 1724 1739
    • (2010) Commun Math Sci , vol.32 , Issue.4 , pp. 1724-1739
    • Dong, B.1    Chien, A.2    Shen, Z.3
  • 3
    • 84916198639 scopus 로고    scopus 로고
    • A study of segmentation methods for detection of tumor in brain MRI
    • J. Patel, and K. Doshi A study of segmentation methods for detection of tumor in brain MRI Adv Electron Electr Eng 4 3 2014 279 284
    • (2014) Adv Electron Electr Eng , vol.4 , Issue.3 , pp. 279-284
    • Patel, J.1    Doshi, K.2
  • 4
    • 84963665858 scopus 로고    scopus 로고
    • Segmentation of brain tumour and its area calculation in brain MRI images using K-mean clustering and Fuzzy C-mean algorithm
    • M. Rohit, S. Kabade, and M.S. Gaikwad Segmentation of brain tumour and its area calculation in brain MRI images using K-mean clustering and Fuzzy C-mean algorithm Int J Comput Sci Eng Technol (IJCSET) 4 5 2013 524 531
    • (2013) Int J Comput Sci Eng Technol (IJCSET) , vol.4 , Issue.5 , pp. 524-531
    • Rohit, M.1    Kabade, S.2    Gaikwad, M.S.3
  • 5
    • 84942016640 scopus 로고    scopus 로고
    • A new approach to image segmentation for brain tumor detection using pillar K-means algorithm
    • H.A. Aslam, T. Ramashri, and M.I.A. Ahsan A new approach to image segmentation for brain tumor detection using pillar K-means algorithm Int J Adv Res Comput Commun Eng 2 2013 1429 1436
    • (2013) Int J Adv Res Comput Commun Eng , vol.2 , pp. 1429-1436
    • Aslam, H.A.1    Ramashri, T.2    Ahsan, M.I.A.3
  • 6
    • 84893739159 scopus 로고    scopus 로고
    • Segmentation techniques for image analysis: A review
    • J. Acharya, S. Gadhiya, and Raviya Segmentation techniques for image analysis: a review Int J Comput Sci Manage Res 2 4 2013 1218 1221
    • (2013) Int J Comput Sci Manage Res , vol.2 , Issue.4 , pp. 1218-1221
    • Acharya, J.1    Gadhiya, S.2    Raviya3
  • 7
    • 84964041723 scopus 로고    scopus 로고
    • A review on image segmentation clustering algorithms
    • D. Naik, and P. Shah A review on image segmentation clustering algorithms Int J Comput Sci Inform Technol 5 3 2014 3289 3293
    • (2014) Int J Comput Sci Inform Technol , vol.5 , Issue.3 , pp. 3289-3293
    • Naik, D.1    Shah, P.2
  • 8
    • 85006279786 scopus 로고    scopus 로고
    • Improved hybrid segmentation of brain MRI tissue and tumor using statistical features
    • S.A. Christe, K. Malathy, and A. Kandaswamy Improved hybrid segmentation of brain MRI tissue and tumor using statistical features ICTACT J Image Video Process 1 1 2010 34 49
    • (2010) ICTACT J Image Video Process , vol.1 , Issue.1 , pp. 34-49
    • Christe, S.A.1    Malathy, K.2    Kandaswamy, A.3
  • 9
    • 84928560504 scopus 로고    scopus 로고
    • Review on recent image segmentation techniques
    • G.K. Seerha, and R. Kaur Review on recent image segmentation techniques Int J Comput Sci Eng (IJCSE) 5 2 2013 109 112
    • (2013) Int J Comput Sci Eng (IJCSE) , vol.5 , Issue.2 , pp. 109-112
    • Seerha, G.K.1    Kaur, R.2
  • 11
    • 84963705333 scopus 로고    scopus 로고
    • Integration of clustering, optimization and partial differential equation method for improved image segmentation
    • J. Kaur, S. Agrawal, and R. Vig Integration of clustering, optimization and partial differential equation method for improved image segmentation Int J Image Graph Signal Process 4 11 2012 26 33
    • (2012) Int J Image Graph Signal Process , vol.4 , Issue.11 , pp. 26-33
    • Kaur, J.1    Agrawal, S.2    Vig, R.3
  • 12
    • 84863227655 scopus 로고    scopus 로고
    • Some clustering algorithms to enhance the performance of the network intrusion detection system
    • M. Panda, and M.R. Patra some clustering algorithms to enhance the performance of the network intrusion detection system J Theor Appl Inform Technol 4 8 2008 795 801
    • (2008) J Theor Appl Inform Technol , vol.4 , Issue.8 , pp. 795-801
    • Panda, M.1    Patra, M.R.2
  • 13
    • 84880834923 scopus 로고    scopus 로고
    • Automatic segmentation of brain tumour from multiple images of brain MRI
    • S.K. Bandhyopadhyay, and T.U. Paul Automatic segmentation of brain tumour from multiple images of brain MRI Int J Appl Innovat Eng Manage (IJAIEM) 2 1 2013 240 248
    • (2013) Int J Appl Innovat Eng Manage (IJAIEM) , vol.2 , Issue.1 , pp. 240-248
    • Bandhyopadhyay, S.K.1    Paul, T.U.2
  • 14
    • 85006248793 scopus 로고    scopus 로고
    • Spatial Fuzzy C-means PET image segmentation of neurodegenerative disorder spatial Fuzzy C-means PET image segmentation of neurodegenerative disorder
    • A. Meena, and K. Raja Spatial Fuzzy C-means PET image segmentation of neurodegenerative disorder spatial Fuzzy C-means PET image segmentation of neurodegenerative disorder Indian J Comput Sci Eng (IJCSE) 4 1 2013 50 55
    • (2013) Indian J Comput Sci Eng (IJCSE) , vol.4 , Issue.1 , pp. 50-55
    • Meena, A.1    Raja, K.2
  • 15
    • 84875328950 scopus 로고    scopus 로고
    • Segmentation of bone structure in X-ray images using convolutional neural network
    • C.C. Glavan, and S. Holban Segmentation of bone structure in X-ray images using convolutional neural network Adv Electr Comput Eng 13 1 2013 1 8
    • (2013) Adv Electr Comput Eng , vol.13 , Issue.1 , pp. 1-8
    • Glavan, C.C.1    Holban, S.2
  • 17
    • 84874416357 scopus 로고    scopus 로고
    • Colour image segmentation using K-medoids clustering
    • A. Yerpude, and S. Dubey Colour image segmentation using K-medoids clustering Int J Comput Technol Appl 3 1 2012 152 154
    • (2012) Int J Comput Technol Appl , vol.3 , Issue.1 , pp. 152-154
    • Yerpude, A.1    Dubey, S.2
  • 18
    • 84951937120 scopus 로고    scopus 로고
    • Implementation of image segmentation for natural images using clustering methods
    • S. Islam, and M. Ahmed Implementation of image segmentation for natural images using clustering methods Int J Emerg Technol Adv Eng 3 3 2013 175 180
    • (2013) Int J Emerg Technol Adv Eng , vol.3 , Issue.3 , pp. 175-180
    • Islam, S.1    Ahmed, M.2
  • 19
    • 85006279786 scopus 로고    scopus 로고
    • Improved hybrid segmentation of brain MRI tissue and tumor using statistical features
    • S.A. Christe, K. Malathy, and A. Kandaswamy Improved hybrid segmentation of brain MRI tissue and tumor using statistical features J Image Video Process 1 1 2010 43 49
    • (2010) J Image Video Process , vol.1 , Issue.1 , pp. 43-49
    • Christe, S.A.1    Malathy, K.2    Kandaswamy, A.3
  • 21
    • 84976246611 scopus 로고    scopus 로고
    • An experimental analysis of Fuzzy C-means and K-means segmentation algorithm for iron detection in brain SWI using Matlab
    • B. Wilson, and J.P.M. Dhas An experimental analysis of Fuzzy C-means and K-means segmentation algorithm for iron detection in brain SWI using Matlab Int J Comput Appl 104 15 2014 36 38
    • (2014) Int J Comput Appl , vol.104 , Issue.15 , pp. 36-38
    • Wilson, B.1    Dhas, J.P.M.2
  • 23
    • 85015527837 scopus 로고    scopus 로고
    • Brain tumor detection and identification from T1 post contrast MR images using cluster based segmentation
    • G. Anandgaonkar, and G. Sable Brain tumor detection and identification from T1 post contrast MR images using cluster based segmentation Int J Sci Res 3 4 2014 814 817
    • (2014) Int J Sci Res , vol.3 , Issue.4 , pp. 814-817
    • Anandgaonkar, G.1    Sable, G.2
  • 25
    • 85039736911 scopus 로고    scopus 로고
    • Auckland University. [accessed 15.03.14]
    • Auckland University. < https://www.cs.auckland.ac.nz/courses/compsci373s1c/PatricesLectures/Image%20 Filtering-2up.pdf >; [accessed 15.03.14].
  • 27
    • 68649110508 scopus 로고    scopus 로고
    • Does median filter truly preserve edges better than linear filtering?
    • A. Castro, and D.L. Donoho Does median filter truly preserve edges better than linear filtering? Ann Stat 37 3 2009 1172 1206
    • (2009) Ann Stat , vol.37 , Issue.3 , pp. 1172-1206
    • Castro, A.1    Donoho, D.L.2
  • 28
    • 85015535492 scopus 로고    scopus 로고
    • Image segmentation for uneven lighting images using adaptive thresholding and dynamic window based on incremental window growing approach
    • R. Saini, and M. Dutta Image segmentation for uneven lighting images using adaptive thresholding and dynamic window based on incremental window growing approach Int J Comput Appl 56 13 2012 31 36
    • (2012) Int J Comput Appl , vol.56 , Issue.13 , pp. 31-36
    • Saini, R.1    Dutta, M.2
  • 30
    • 67650984784 scopus 로고    scopus 로고
    • PhD thesis, Department of Electrical and Computer Engineering North Carolina State University [Chapter 3]
    • Lee CP. Robust image segmentation using active contours: level set approaches, PhD thesis, Department of Electrical and Computer Engineering North Carolina State University; 2005. p. 18-30. [Chapter 3].
    • (2005) Robust Image Segmentation Using Active Contours: Level Set Approaches , pp. 18-30
    • Lee, C.P.1
  • 31
    • 85039752804 scopus 로고    scopus 로고
    • Kdnuggets. [accessed 23.04.14]
    • Kdnuggets. < http://www.kdnuggets.com/faq/precision-recall.html >; [accessed 23.04.14].
  • 34
  • 35
    • 85039734848 scopus 로고    scopus 로고
    • [accessed 29.12.13].
    • DICOM Samples Image Sets. < http://www.osirix-viewer.com/datasets/ >; [accessed 29.12.13].
    • DICOM Samples Image Sets
  • 36
    • 85039733138 scopus 로고    scopus 로고
    • [accessed 12.01.14].
    • MICCA Nice 2012. < http://www2.imm.dtu.dk/projects/BRATS2012/data.html >; [accessed 12.01.14].
    • MICCA Nice 2012
  • 37
    • 85039742429 scopus 로고    scopus 로고
    • NIH Center for Information Technology [accessed 07.04.14].
    • NIH Center for Information Technology. < http://mipav.cit.nih.gov/ >; [accessed 07.04.14].


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.