메뉴 건너뛰기




Volumn 30, Issue , 2015, Pages 1-13

Using an unsupervised approach of Probabilistic Neural Network (PNN) for land use classification from multitemporal satellite images

Author keywords

Cluster validity index; Land use; LANDSAT and SPOT images; Probabilistic Neural Network; Unsupervised classification; Ward's method

Indexed keywords

FUZZY CLUSTERING; IMAGE CLASSIFICATION; LAND USE;

EID: 84922519910     PISSN: 15684946     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.asoc.2015.01.037     Document Type: Article
Times cited : (44)

References (81)
  • 2
    • 84857156093 scopus 로고    scopus 로고
    • Color image classification and retrieval using image mining techniques
    • V. Mohan, and A. Kannan Color image classification and retrieval using image mining techniques Int. J. Eng. Sci. Technol. 2 5 2010 1014 1020
    • (2010) Int. J. Eng. Sci. Technol. , vol.2 , Issue.5 , pp. 1014-1020
    • Mohan, V.1    Kannan, A.2
  • 4
    • 84878473520 scopus 로고    scopus 로고
    • ECG arrhythmia classification using a probabilistic neural network with a feature reduction method
    • J.S. Wang, W.C. Chiang, Y.L. Hsu, and Y.T.C. Yang ECG arrhythmia classification using a probabilistic neural network with a feature reduction method Neurocomputing 116 2013 38 45
    • (2013) Neurocomputing , vol.116 , pp. 38-45
    • Wang, J.S.1    Chiang, W.C.2    Hsu, Y.L.3    Yang, Y.T.C.4
  • 6
    • 45549092463 scopus 로고    scopus 로고
    • Variable predictive model based classification algorithm for effective separation of protein structural classes
    • R. Raghuraj, and S. Lakshminarayanan Variable predictive model based classification algorithm for effective separation of protein structural classes Comput. Biol. Chem. 32 4 2008 302 306
    • (2008) Comput. Biol. Chem. , vol.32 , Issue.4 , pp. 302-306
    • Raghuraj, R.1    Lakshminarayanan, S.2
  • 7
    • 13544274197 scopus 로고    scopus 로고
    • A neural network application to consumer classification to improve the timing of direct marketing activities
    • F. Kaefer, C.M. Heilman, and S.D. Ramenofsky A neural network application to consumer classification to improve the timing of direct marketing activities Comput. Oper. Res. 32 10 2005 2595 2615
    • (2005) Comput. Oper. Res. , vol.32 , Issue.10 , pp. 2595-2615
    • Kaefer, F.1    Heilman, C.M.2    Ramenofsky, S.D.3
  • 8
    • 84867224065 scopus 로고    scopus 로고
    • Power quality disturbances classification based on S-transform and probabilistic neural network
    • N. Huang, D. Xu, X. Liu, and L. Lin Power quality disturbances classification based on S-transform and probabilistic neural network Neurocomputing 98 2012 12 23
    • (2012) Neurocomputing , vol.98 , pp. 12-23
    • Huang, N.1    Xu, D.2    Liu, X.3    Lin, L.4
  • 9
    • 84864415476 scopus 로고    scopus 로고
    • Land use classification from multitemporal Landsat imagery using the Yearly Land Cover Dynamics (YLCD) method
    • Y. Julien, J.A. Sobrino, and J.-C. Jiménez-Munoz Land use classification from multitemporal Landsat imagery using the Yearly Land Cover Dynamics (YLCD) method Int. J. Appl. Earth Obs. Geoinf. 13 2011 711 720
    • (2011) Int. J. Appl. Earth Obs. Geoinf. , vol.13 , pp. 711-720
    • Julien, Y.1    Sobrino, J.A.2    Jiménez-Munoz, J.-C.3
  • 10
    • 33745068788 scopus 로고    scopus 로고
    • Classifying rangeland vegetation type and coverage from NDVI time series using Fourier Filtered Cycle Similarity
    • R. Geerken, B. Zaitchik, and J.P. Evans Classifying rangeland vegetation type and coverage from NDVI time series using Fourier Filtered Cycle Similarity Int. J. Remote Sens. 26 24 2005 5535 5554
    • (2005) Int. J. Remote Sens. , vol.26 , Issue.24 , pp. 5535-5554
    • Geerken, R.1    Zaitchik, B.2    Evans, J.P.3
  • 11
    • 80053572788 scopus 로고    scopus 로고
    • Supervised and unsupervised land use map generation from remotely sensed images using ant based systems
    • A. Halder, A. Ghosh, and S. Ghosh Supervised and unsupervised land use map generation from remotely sensed images using ant based systems Appl. Soft Comput. 11 2011 5770 5781
    • (2011) Appl. Soft Comput. , vol.11 , pp. 5770-5781
    • Halder, A.1    Ghosh, A.2    Ghosh, S.3
  • 12
    • 84886688148 scopus 로고    scopus 로고
    • Automatic remotely sensed image classification in a grid environment based on the maximum likelihood method
    • J. Sun, J. Yang, C. Zhang, W. Yun, and J. Qu Automatic remotely sensed image classification in a grid environment based on the maximum likelihood method Math. Comput. Modell. 58 3-4 2013 573 581
    • (2013) Math. Comput. Modell. , vol.58 , Issue.34 , pp. 573-581
    • Sun, J.1    Yang, J.2    Zhang, C.3    Yun, W.4    Qu, J.5
  • 13
    • 84887218556 scopus 로고    scopus 로고
    • Detection of hidden bruise on kiwi fruit using hyperspectral imaging and parallelepiped classification
    • Q. Lü, and M. Tang Detection of hidden bruise on kiwi fruit using hyperspectral imaging and parallelepiped classification Procedia Environ. Sci. 12 B 2012 1172 1179
    • (2012) Procedia Environ. Sci. , vol.12 , Issue.B , pp. 1172-1179
    • Lü, Q.1    Tang, M.2
  • 15
    • 35448998903 scopus 로고    scopus 로고
    • A novel fuzzy classifier based on product aggregation operator
    • A. Ghosh, S. Meher, and B.U. Shankar A novel fuzzy classifier based on product aggregation operator Pattern Recognit. 41 6 2008 961 971
    • (2008) Pattern Recognit. , vol.41 , Issue.6 , pp. 961-971
    • Ghosh, A.1    Meher, S.2    Shankar, B.U.3
  • 16
    • 0029728880 scopus 로고    scopus 로고
    • Fuzzy classification of spatially degraded thematic Mapper data for the estimation of sub-pixel components
    • F. Maselli, A. Rodolfi, and C. Copnese Fuzzy classification of spatially degraded thematic Mapper data for the estimation of sub-pixel components Int. J. Remote Sens. 17 3 1996 537 551
    • (1996) Int. J. Remote Sens. , vol.17 , Issue.3 , pp. 537-551
    • Maselli, F.1    Rodolfi, A.2    Copnese, C.3
  • 17
    • 0033899592 scopus 로고    scopus 로고
    • An explicit fuzzy supervised classification method for multispectral remote sensing images
    • F. Melgani, B.A. Hashemy, and S. Taha An explicit fuzzy supervised classification method for multispectral remote sensing images IEEE Trans. Geosci. Remote Sens. 38 1 2000 287 295
    • (2000) IEEE Trans. Geosci. Remote Sens. , vol.38 , Issue.1 , pp. 287-295
    • Melgani, F.1    Hashemy, B.A.2    Taha, S.3
  • 18
    • 84880362774 scopus 로고    scopus 로고
    • A self-trained semisupervised SVM approach to the remote sensing land cover classification
    • Y. Liu, B. Zhang, L.-m. Wang, and N. Wang A self-trained semisupervised SVM approach to the remote sensing land cover classification Comput. Geosci. 59 2013 98 107
    • (2013) Comput. Geosci. , vol.59 , pp. 98-107
    • Liu, Y.1    Zhang, B.2    Wang, L.-M.3    Wang, N.4
  • 19
    • 0029543410 scopus 로고
    • Neural network classification of remote-sensing data
    • D.M. Miller, E.J. Kaminsky, and S. Rana Neural network classification of remote-sensing data Comput. Geosci. 21 1995 377 386
    • (1995) Comput. Geosci. , vol.21 , pp. 377-386
    • Miller, D.M.1    Kaminsky, E.J.2    Rana, S.3
  • 20
    • 34248339205 scopus 로고    scopus 로고
    • Artificial neural network model for identifying taxi gross emitter from remote sensing data of vehicle emission
    • J. Zeng, H.-f. Guo, and Y.-m. HU Artificial neural network model for identifying taxi gross emitter from remote sensing data of vehicle emission J. Environ. Sci. 19 2007 427 431
    • (2007) J. Environ. Sci. , vol.19 , pp. 427-431
    • Zeng, J.1    Guo, H.-F.2    Hu, Y.-M.3
  • 21
    • 0034270699 scopus 로고    scopus 로고
    • Linear spectral mixture models and support vector machines for remote sensing
    • M. Brown, H. Lewis, and S. Gunn Linear spectral mixture models and support vector machines for remote sensing IEEE Trans. Geosci. Remote Sens. 38 5 2000 2346 2360
    • (2000) IEEE Trans. Geosci. Remote Sens. , vol.38 , Issue.5 , pp. 2346-2360
    • Brown, M.1    Lewis, H.2    Gunn, S.3
  • 22
    • 0037138473 scopus 로고    scopus 로고
    • An assessment of support vector machines for land cover classification
    • C. Huang, L. Davis, and J. Townshend An assessment of support vector machines for land cover classification Int. J. Remote Sens. 23 2002 725 749
    • (2002) Int. J. Remote Sens. , vol.23 , pp. 725-749
    • Huang, C.1    Davis, L.2    Townshend, J.3
  • 23
    • 33746924070 scopus 로고    scopus 로고
    • Comparison of computational intelligence based classification techniques for remotely sensed optical image classification
    • D. Stathakis, and A. Vasilakos Comparison of computational intelligence based classification techniques for remotely sensed optical image classification IEEE Trans. Geosci. Remote Sens. 44 8 2008 2305 2318
    • (2008) IEEE Trans. Geosci. Remote Sens. , vol.44 , Issue.8 , pp. 2305-2318
    • Stathakis, D.1    Vasilakos, A.2
  • 24
    • 0024163843 scopus 로고
    • Split-and-merge segmentation of aerial photographs
    • R. Laprade Split-and-merge segmentation of aerial photographs Comput. Vis. Graphics Image Process. 48 1 1988 77 86
    • (1988) Comput. Vis. Graphics Image Process. , vol.48 , Issue.1 , pp. 77-86
    • Laprade, R.1
  • 25
    • 0030619890 scopus 로고    scopus 로고
    • Fuzzy and isodata classification of landform elements from digital terrain data in Pleasant Valley Wisconsin
    • B.J. Irvin, S.J. Ventura, and B.K. Slater Fuzzy and isodata classification of landform elements from digital terrain data in Pleasant Valley Wisconsin Geoderma 77 2-4 1997 137 154
    • (1997) Geoderma , vol.77 , Issue.24 , pp. 137-154
    • Irvin, B.J.1    Ventura, S.J.2    Slater, B.K.3
  • 26
    • 0033924584 scopus 로고    scopus 로고
    • Segmentation of remotely sensed images with fuzzy thresholding and quantitative evaluation
    • S. Pal, A. Ghosh, and B. Uma Shankar Segmentation of remotely sensed images with fuzzy thresholding and quantitative evaluation Int. J. Remote Sens. 21 11 2000 2269 2300
    • (2000) Int. J. Remote Sens. , vol.21 , Issue.11 , pp. 2269-2300
    • Pal, S.1    Ghosh, A.2    Uma Shankar, B.3
  • 27
    • 0022722953 scopus 로고
    • Segmentation of a thematic Mapper image using fuzzy c-means clustering algorithm
    • R. Cannon, R. Dave, J. Bezdek, and M. Trivedi Segmentation of a thematic Mapper image using fuzzy c-means clustering algorithm IEEE Trans. Geosci. Remote Sens. 24 1 1986 400 408
    • (1986) IEEE Trans. Geosci. Remote Sens. , vol.24 , Issue.1 , pp. 400-408
    • Cannon, R.1    Dave, R.2    Bezdek, J.3    Trivedi, M.4
  • 28
    • 17644425298 scopus 로고    scopus 로고
    • Segmentation of remote-sensing images by incremental neural network
    • M.N. Kurnaz, Z. Dokur, and T. Olmez Segmentation of remote-sensing images by incremental neural network Pattern Recogn. Lett. 26 8 2005 1104 1316
    • (2005) Pattern Recogn. Lett. , vol.26 , Issue.8 , pp. 1104-1316
    • Kurnaz, M.N.1    Dokur, Z.2    Olmez, T.3
  • 30
    • 0027592254 scopus 로고
    • A new clustering algorithm applicable to polarimetric and SAR images
    • Y. Wong, and E. Posner A new clustering algorithm applicable to polarimetric and SAR images IEEE Trans. Geosci. Remote Sens. 31 3 1993 634 644
    • (1993) IEEE Trans. Geosci. Remote Sens. , vol.31 , Issue.3 , pp. 634-644
    • Wong, Y.1    Posner, E.2
  • 32
    • 0024861871 scopus 로고
    • Approximation by superpositions of a sigmoidal function
    • G. Cybenko Approximation by superpositions of a sigmoidal function Math. Control. Signals Syst. 2 1989 303 314
    • (1989) Math. Control. Signals Syst. , vol.2 , pp. 303-314
    • Cybenko, G.1
  • 33
    • 0025751820 scopus 로고
    • Approximation capabilities of multilayer feedforward networks
    • K. Hornik Approximation capabilities of multilayer feedforward networks Neural Networks 4 1991 251 257
    • (1991) Neural Networks , vol.4 , pp. 251-257
    • Hornik, K.1
  • 34
    • 0024880831 scopus 로고
    • Multilayer feedforward networks are universal approximators
    • K. Hornik, M. Stinchcombe, and H. White Multilayer feedforward networks are universal approximators Neural Networks 2 1989 359 366
    • (1989) Neural Networks , vol.2 , pp. 359-366
    • Hornik, K.1    Stinchcombe, M.2    White, H.3
  • 35
    • 0001595997 scopus 로고
    • Neural network classifiers estimate Bayesian a posteriori probabilities
    • M.D. Richard, and R. Lippmann Neural network classifiers estimate Bayesian a posteriori probabilities Neural Comput. 3 1991 461 483
    • (1991) Neural Comput. , vol.3 , pp. 461-483
    • Richard, M.D.1    Lippmann, R.2
  • 36
    • 0024123401 scopus 로고
    • Probabilistic neural networks for classification, mapping, or associative memory
    • July
    • D.F. Specht Probabilistic neural networks for classification, mapping, or associative memory IEEE International Conference on Neural Networks 1 July 1988 525 532
    • (1988) IEEE International Conference on Neural Networks 1 , pp. 525-532
    • Specht, D.F.1
  • 37
    • 0025206332 scopus 로고
    • Probabilistic neural networks
    • D.F. Specht Probabilistic neural networks Neural Networks 3 1 1990 109 118
    • (1990) Neural Networks , vol.3 , Issue.1 , pp. 109-118
    • Specht, D.F.1
  • 38
    • 33847342952 scopus 로고    scopus 로고
    • Generalized locally recurrent probabilistic neural networks with application to text-independent speaker verification
    • T.D. Gancheva, D.K. Tasoulisb, M.N. Vrahatisb, and N.D. Fakotakis Generalized locally recurrent probabilistic neural networks with application to text-independent speaker verification Neurocomputing 70 2007 1424 1438
    • (2007) Neurocomputing , vol.70 , pp. 1424-1438
    • Gancheva, T.D.1    Tasoulisb, D.K.2    Vrahatisb, M.N.3    Fakotakis, N.D.4
  • 39
    • 34547653843 scopus 로고    scopus 로고
    • Application of probabilistic neural networks in qualitative analysis of near infrared spectra: Determination of producing area and variety of loquats
    • X. Fu, Y. Ying, Y. Zhou, and H. Xu Application of probabilistic neural networks in qualitative analysis of near infrared spectra: determination of producing area and variety of loquats Anal. Chim. Acta 598 2007 27 33
    • (2007) Anal. Chim. Acta , vol.598 , pp. 27-33
    • Fu, X.1    Ying, Y.2    Zhou, Y.3    Xu, H.4
  • 40
    • 38749092940 scopus 로고    scopus 로고
    • Novelty detection with constructive probabilistic neural networks
    • A.L.I. Oliveira, F.R.G. Costa, and C.O.S. Filho Novelty detection with constructive probabilistic neural networks Neurocomputing 71 2008 1046 1053
    • (2008) Neurocomputing , vol.71 , pp. 1046-1053
    • Oliveira, A.L.I.1    Costa, F.R.G.2    Filho, C.O.S.3
  • 41
    • 50449091663 scopus 로고    scopus 로고
    • Iterative principles of recognition in probabilistic neural networks
    • J. Grim, and J. Hora Iterative principles of recognition in probabilistic neural networks Neural Networks 21 2008 838 846
    • (2008) Neural Networks , vol.21 , pp. 838-846
    • Grim, J.1    Hora, J.2
  • 42
    • 69449101508 scopus 로고    scopus 로고
    • A probabilistic neural network for earthquake magnitude prediction
    • H. Adeli, and A. Panakkat A probabilistic neural network for earthquake magnitude prediction Neural Networks 22 2009 1018 1024
    • (2009) Neural Networks , vol.22 , pp. 1018-1024
    • Adeli, H.1    Panakkat, A.2
  • 43
    • 84907272859 scopus 로고    scopus 로고
    • A new license plate recognition system based on probabilistic neural networks
    • F. Ozturk, and F. Ozen A new license plate recognition system based on probabilistic neural networks Procedia Technol. 1 2012 124 128
    • (2012) Procedia Technol. , vol.1 , pp. 124-128
    • Ozturk, F.1    Ozen, F.2
  • 44
    • 84857447530 scopus 로고    scopus 로고
    • An approach based on probabilistic neural network for diagnosis of Mesothelioma's disease
    • O. Er, A.C. Tanrikulu, A. Abakay, and F. Temurtas An approach based on probabilistic neural network for diagnosis of Mesothelioma's disease Comput. Electr. Eng. 38 2012 75 81
    • (2012) Comput. Electr. Eng. , vol.38 , pp. 75-81
    • Er, O.1    Tanrikulu, A.C.2    Abakay, A.3    Temurtas, F.4
  • 45
    • 84878885214 scopus 로고    scopus 로고
    • Application of probabilistic neural network in bacterial identification by biochemical profiles
    • J. Jia, C. Liang, J. Cao, and Z. Li Application of probabilistic neural network in bacterial identification by biochemical profiles J. Microbiol. Methods 94 2013 86 87
    • (2013) J. Microbiol. Methods , vol.94 , pp. 86-87
    • Jia, J.1    Liang, C.2    Cao, J.3    Li, Z.4
  • 46
    • 84873621142 scopus 로고    scopus 로고
    • Prediction of flow pattern of gas-liquid flow through circular microchannel using probabilistic neural network
    • S. Timung, and T.K. Mandal Prediction of flow pattern of gas-liquid flow through circular microchannel using probabilistic neural network Appl. Soft Comput. 13 2013 1674 1685
    • (2013) Appl. Soft Comput. , vol.13 , pp. 1674-1685
    • Timung, S.1    Mandal, T.K.2
  • 47
    • 84879894327 scopus 로고    scopus 로고
    • On training RBF neural networks using input-output fuzzy clustering and particle swarm optimization
    • G.E. Tsekouras, and J. Tsimikas On training RBF neural networks using input-output fuzzy clustering and particle swarm optimization Fuzzy Sets Syst. 221 2013 65 89
    • (2013) Fuzzy Sets Syst. , vol.221 , pp. 65-89
    • Tsekouras, G.E.1    Tsimikas, J.2
  • 49
    • 70350272885 scopus 로고    scopus 로고
    • Granular neural networks and their development through context-based clustering and adjustable dimensionality of receptive fields
    • H.-S. Park, W. Pedrycz, and S.-K. Oh Granular neural networks and their development through context-based clustering and adjustable dimensionality of receptive fields IEEE Trans. Neural Networks 20 10 2009 1604 1616
    • (2009) IEEE Trans. Neural Networks , vol.20 , Issue.10 , pp. 1604-1616
    • Park, H.-S.1    Pedrycz, W.2    Oh, S.-K.3
  • 50
    • 0032122726 scopus 로고    scopus 로고
    • Conditional fuzzy clustering in the design of radial basis function neural networks
    • W. Pedrycz Conditional fuzzy clustering in the design of radial basis function neural networks IEEE Trans. Neural Networks 9 4 1998 601 612
    • (1998) IEEE Trans. Neural Networks , vol.9 , Issue.4 , pp. 601-612
    • Pedrycz, W.1
  • 51
    • 55949110248 scopus 로고    scopus 로고
    • A granular-oriented development of functional radial basis function neural networks
    • W. Pedrycz, H.S. Park, and S.K. Oh A granular-oriented development of functional radial basis function neural networks Neurocomputing 72 2008 420 435
    • (2008) Neurocomputing , vol.72 , pp. 420-435
    • Pedrycz, W.1    Park, H.S.2    Oh, S.K.3
  • 52
    • 79951949969 scopus 로고    scopus 로고
    • Design pf information granule-oriented RBF neural networks and its application to power supply for high-field magnet
    • H.-S. Park, Y.-D. Chung, S.-K. Oh, W. Pedrycz, and H.-K. Kim Design pf information granule-oriented RBF neural networks and its application to power supply for high-field magnet Eng. Appl. Artif. Intell. 24 2011 543 554
    • (2011) Eng. Appl. Artif. Intell. , vol.24 , pp. 543-554
    • Park, H.-S.1    Chung, Y.-D.2    Oh, S.-K.3    Pedrycz, W.4    Kim, H.-K.5
  • 53
    • 77950628563 scopus 로고    scopus 로고
    • The design methodology of radial basis function neural networks based on fuzzy K-nearest neighbors approach
    • S.B. Roh, T.C. Ahn, and W. Pedrycz The design methodology of radial basis function neural networks based on fuzzy K-nearest neighbors approach Fuzzy Sets Syst. 161 13 2010 1803 1822
    • (2010) Fuzzy Sets Syst. , vol.161 , Issue.13 , pp. 1803-1822
    • Roh, S.B.1    Ahn, T.C.2    Pedrycz, W.3
  • 54
    • 33745203522 scopus 로고    scopus 로고
    • Improving RBF networks performance in regression tasks by means of a supervised fuzzy clustering
    • A. Staiano, R. Tagliaferri, and W. Pedrycz Improving RBF networks performance in regression tasks by means of a supervised fuzzy clustering Neurocomputing 69 2006 1570 1581
    • (2006) Neurocomputing , vol.69 , pp. 1570-1581
    • Staiano, A.1    Tagliaferri, R.2    Pedrycz, W.3
  • 55
    • 0034227542 scopus 로고    scopus 로고
    • Analysis of input-output clustering for determining centers of RBFNN
    • Z. Uykan, C. Guzelis, M.E. Celebi, and H.N. Koivo Analysis of input-output clustering for determining centers of RBFNN IEEE Trans. Neural Networks 11 4 2000 851 858
    • (2000) IEEE Trans. Neural Networks , vol.11 , Issue.4 , pp. 851-858
    • Uykan, Z.1    Guzelis, C.2    Celebi, M.E.3    Koivo, H.N.4
  • 56
    • 84944178665 scopus 로고
    • Hierarchical grouping to optimize an objective function
    • J.H. Ward Hierarchical grouping to optimize an objective function J. Am. Stat. Assoc. 58 1963 236 244
    • (1963) J. Am. Stat. Assoc. , vol.58 , pp. 236-244
    • Ward, J.H.1
  • 57
    • 13844255216 scopus 로고    scopus 로고
    • A quantitative method for clustering size distributions of elements
    • A.M. Dillner, J.J. Schauer, W.F. Christensen, and G.R. Cass A quantitative method for clustering size distributions of elements Atmos. Environ. 39 2005 1525 1537
    • (2005) Atmos. Environ. , vol.39 , pp. 1525-1537
    • Dillner, A.M.1    Schauer, J.J.2    Christensen, W.F.3    Cass, G.R.4
  • 58
    • 31944435394 scopus 로고    scopus 로고
    • Classification of PM10 distributions in Taiwan
    • H.C. Lu, C.L. Chang, and J.C. Hsieh Classification of PM10 distributions in Taiwan Atmos. Environ. 40 2006 1452 1463
    • (2006) Atmos. Environ. , vol.40 , pp. 1452-1463
    • Lu, H.C.1    Chang, C.L.2    Hsieh, J.C.3
  • 59
    • 70349319569 scopus 로고    scopus 로고
    • Clustering files of chemical structures using the Székely-Rizzo generalization of Ward's method
    • T. Varin, R. Bureau, C. Mueller, and P. Willett Clustering files of chemical structures using the Székely-Rizzo generalization of Ward's method J. Mol. Graphics Modell. 28 2009 187 195
    • (2009) J. Mol. Graphics Modell. , vol.28 , pp. 187-195
    • Varin, T.1    Bureau, R.2    Mueller, C.3    Willett, P.4
  • 60
    • 70549085014 scopus 로고    scopus 로고
    • Clustering species using a model of population dynamics and aggregation theory
    • N. Picard, F. Mortier, V. Rossi, and S. Gourlet-Fleury Clustering species using a model of population dynamics and aggregation theory Ecol. Modell. 221 2010 152 160
    • (2010) Ecol. Modell. , vol.221 , pp. 152-160
    • Picard, N.1    Mortier, F.2    Rossi, V.3    Gourlet-Fleury, S.4
  • 61
    • 84859931896 scopus 로고    scopus 로고
    • Assessing the efficiency of clustering algorithms and goodness-of-fit measures using phytoplankton field data
    • A. Carteron, M. Jeanmougin, F. Leprieur, and S. Spatharis Assessing the efficiency of clustering algorithms and goodness-of-fit measures using phytoplankton field data Ecol. Inform. 9 2012 64 68
    • (2012) Ecol. Inform. , vol.9 , pp. 64-68
    • Carteron, A.1    Jeanmougin, M.2    Leprieur, F.3    Spatharis, S.4
  • 62
    • 84887808498 scopus 로고    scopus 로고
    • The application of hierarchical cluster analysis and non-negative matrix factorization to European atmospheric monitoring site classification
    • C.S. Malley, C.F. Braban, and M.R. Heal The application of hierarchical cluster analysis and non-negative matrix factorization to European atmospheric monitoring site classification Atmos. Res. 138 2014 30 40
    • (2014) Atmos. Res. , vol.138 , pp. 30-40
    • Malley, C.S.1    Braban, C.F.2    Heal, M.R.3
  • 63
    • 84893571707 scopus 로고    scopus 로고
    • Modeling the spatial distribution of crop sequences at a large regional scale using land-cover survey data: A case from France
    • Y. Xiao, C. Mignolet, J.-F. Mari, and M. Benoît Modeling the spatial distribution of crop sequences at a large regional scale using land-cover survey data: a case from France Comput. Electron. Agric. 102 2014 51 63
    • (2014) Comput. Electron. Agric. , vol.102 , pp. 51-63
    • Xiao, Y.1    Mignolet, C.2    Mari, J.-F.3    Benoît, M.4
  • 64
    • 0000440128 scopus 로고
    • A Monte Carlo study of the recovery of cluster structure in binary data by hierarchical clustering techniques
    • S. Hands, and B. Everitt A Monte Carlo study of the recovery of cluster structure in binary data by hierarchical clustering techniques Multivar. Behav. Res. 22 1987 235 243
    • (1987) Multivar. Behav. Res. , vol.22 , pp. 235-243
    • Hands, S.1    Everitt, B.2
  • 65
    • 78649892044 scopus 로고    scopus 로고
    • Fuzzy clustering algorithms for unsupervised change detection in remote sensing images
    • A. Ghosh, N.S. Mishra, and S. Ghosh Fuzzy clustering algorithms for unsupervised change detection in remote sensing images Inform. Sci. 181 2011 699 715
    • (2011) Inform. Sci. , vol.181 , pp. 699-715
    • Ghosh, A.1    Mishra, N.S.2    Ghosh, S.3
  • 66
    • 34547434740 scopus 로고    scopus 로고
    • On fuzzy cluster validity indices
    • W. Wang, and Y. Zhang On fuzzy cluster validity indices Fuzzy Sets Syst. 158 2007 2095 2117
    • (2007) Fuzzy Sets Syst. , vol.158 , pp. 2095-2117
    • Wang, W.1    Zhang, Y.2
  • 67
    • 18444403761 scopus 로고    scopus 로고
    • A cluster validity index for fuzzy clustering
    • K.-L. Wu, and M.-S. Yang A cluster validity index for fuzzy clustering Pattern Recogn. Lett. 26 2005 1275 1291
    • (2005) Pattern Recogn. Lett. , vol.26 , pp. 1275-1291
    • Wu, K.-L.1    Yang, M.-S.2
  • 69
    • 33744781850 scopus 로고    scopus 로고
    • Monitoring of irrigated wheat in a semi-arid climate using crop modelling and remote sensing data: Impact of satellite revisit time frequency
    • R. Hadria, B. Duchemin, A. Lahroun, S. Khabba, S. Er-Raki, G. Dedieu, and A. Chehbouni Monitoring of irrigated wheat in a semi-arid climate using crop modelling and remote sensing data: impact of satellite revisit time frequency Int. J. Remote Sens. 27 2006 1093 1117
    • (2006) Int. J. Remote Sens. , vol.27 , pp. 1093-1117
    • Hadria, R.1    Duchemin, B.2    Lahroun, A.3    Khabba, S.4    Er-Raki, S.5    Dedieu, G.6    Chehbouni, A.7
  • 71
    • 33845198962 scopus 로고    scopus 로고
    • Combining FAO-56 model and ground-based remote sensing to estimate water consumptions of wheat crops in a semi-arid region
    • S. Er-Raki, A. Chehbouni, N. Guemouria, B. Duchemin, J. Ezzahar, and R. Hadria Combining FAO-56 model and ground-based remote sensing to estimate water consumptions of wheat crops in a semi-arid region Agric. Water Manage. 87 2007 41 54
    • (2007) Agric. Water Manage. , vol.87 , pp. 41-54
    • Er-Raki, S.1    Chehbouni, A.2    Guemouria, N.3    Duchemin, B.4    Ezzahar, J.5    Hadria, R.6
  • 72
    • 37249015863 scopus 로고    scopus 로고
    • The use of high-resolution image time series for crop classification and evapotranspiration estimate over an irrigated area in central Morocco
    • V. Simonneaux, B. Duchemin, D. Helson, S. Er-Raki, A. Olioso, and A.G. Chehbouni The use of high-resolution image time series for crop classification and evapotranspiration estimate over an irrigated area in central Morocco Int. J. Remote Sens. 29 2008 95 116
    • (2008) Int. J. Remote Sens. , vol.29 , pp. 95-116
    • Simonneaux, V.1    Duchemin, B.2    Helson, D.3    Er-Raki, S.4    Olioso, A.5    Chehbouni, A.G.6
  • 73
    • 1342343252 scopus 로고    scopus 로고
    • Thematic mapping from remotely sensed data with neural networks: MLP, RBF and PNN based approaches
    • G.M. Foody Thematic mapping from remotely sensed data with neural networks: MLP, RBF and PNN based approaches J. Geoghraph. Syst. 3 2001 217 232
    • (2001) J. Geoghraph. Syst. , vol.3 , pp. 217-232
    • Foody, G.M.1
  • 74
    • 0030141444 scopus 로고    scopus 로고
    • Validating fuzzy partition obtained through c-shells clustering
    • R.N. Dave Validating fuzzy partition obtained through c-shells clustering Pattern Recogn. Lett. 17 1996 613 623
    • (1996) Pattern Recogn. Lett. , vol.17 , pp. 613-623
    • Dave, R.N.1
  • 75
    • 0000764772 scopus 로고
    • The use of multiple measurements in taxonomic problems
    • R.A. Fisher The use of multiple measurements in taxonomic problems Ann. Eugenics 7 2 1936 179 188
    • (1936) Ann. Eugenics , vol.7 , Issue.2 , pp. 179-188
    • Fisher, R.A.1
  • 76
    • 0040949447 scopus 로고
    • The species problem in Iris
    • E. Anderson The species problem in Iris Ann. MO Bot. Gard. 23 3 1936 457 509
    • (1936) Ann. MO Bot. Gard. , vol.23 , Issue.3 , pp. 457-509
    • Anderson, E.1
  • 77
    • 84922543187 scopus 로고    scopus 로고
    • VALERI (Validation of Land European Remote sensing Instruments) Program
    • VALERI (Validation of Land European Remote sensing Instruments) Program, http://w3.avignon.inra.fr/valeri/.
  • 78
    • 0025573354 scopus 로고
    • A phenological classification of terrestrial vegetation cover using shortwave vegetation index imagery
    • D. Lloyd A phenological classification of terrestrial vegetation cover using shortwave vegetation index imagery Int. J. Remote Sens. 11 1990 2269 2279
    • (1990) Int. J. Remote Sens. , vol.11 , pp. 2269-2279
    • Lloyd, D.1
  • 79
    • 0032216156 scopus 로고    scopus 로고
    • Global land cover classifications at 8 km spatial resolution: The use of training data derived from Landsat imagery in decision tree classifiers
    • R.S. De Fries, M. Hansen, J.R.G. Townshend, and R. Sohlberg Global land cover classifications at 8 km spatial resolution: the use of training data derived from Landsat imagery in decision tree classifiers Int. J. Remote Sens. 19 1998 3141 3168
    • (1998) Int. J. Remote Sens. , vol.19 , pp. 3141-3168
    • De Fries, R.S.1    Hansen, M.2    Townshend, J.R.G.3    Sohlberg, R.4
  • 80
    • 0035828231 scopus 로고    scopus 로고
    • Estimation of crop evapotranspiration of irrigation command area using remote sensing and GIS
    • S.S. Ray, and V.K. Dadhwal Estimation of crop evapotranspiration of irrigation command area using remote sensing and GIS Agric. Water Manage. 49 2001 239 249
    • (2001) Agric. Water Manage. , vol.49 , pp. 239-249
    • Ray, S.S.1    Dadhwal, V.K.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.