메뉴 건너뛰기




Volumn 36, Issue 2, 2015, Pages 442-464

Integrating multiple texture methods and NDVI to the Random Forest classification algorithm to detect tea and hazelnut plantation areas in northeast Turkey

Author keywords

[No Author keywords available]

Indexed keywords

AGRICULTURAL PRODUCTS; CROPS; DECISION TREES; GABOR FILTERS; LAND USE; MAPS; REFLECTION; SURVEYS; VEGETATION;

EID: 84922147384     PISSN: 01431161     EISSN: 13665901     Source Type: Journal    
DOI: 10.1080/01431161.2014.995276     Document Type: Article
Times cited : (97)

References (33)
  • 1
    • 84903441127 scopus 로고    scopus 로고
    • Classification of Multispectral Images Using Random Forest Algorithm
    • Akar, Ö., and O. Güngör. 2012. “Classification of Multispectral Images Using Random Forest Algorithm.” Journal of Geodesy and Geoinformation 1 (2): 105–112. doi:10.9733/jgg.241212.1.
    • (2012) Journal of Geodesy and Geoinformation , vol.1 , Issue.2 , pp. 105-112
    • Akar, Ö.1    Güngör, O.2
  • 3
    • 35748978234 scopus 로고    scopus 로고
    • Empirical Characterization of Random Forest Variable Importance Measure, Computational Statistical Data Analysis
    • Archer, K. J., and R. V. Kimes. 2008. “Empirical Characterization of Random Forest Variable Importance Measure, Computational Statistical Data Analysis.” Computational Statistics & Data Analysis 52 (4): 2249–2260. doi:10.1016/j.csda.2007.08.015.
    • (2008) Computational Statistics & Data Analysis , vol.52 , Issue.4 , pp. 2249-2260
    • Archer, K.J.1    Kimes, R.V.2
  • 4
    • 0035478854 scopus 로고    scopus 로고
    • Random Forests
    • Breiman, L. 2001. “Random Forests.” Machine Learning 45 (1): 5–32. Kluwer Academic Publishers. doi:10.1023/A:1010933404324.
    • (2001) Machine Learning , vol.45 , Issue.1 , pp. 5-32
    • Breiman, L.1
  • 11
    • 0038763661 scopus 로고    scopus 로고
    • Boston, MA: Springer Science & Business Media, Birkhäuser
    • Debnath, L. 2002. Wavelet Transforms and Their Applications. (2002 edition). Boston, MA: Springer Science & Business Media, Birkhäuser. ISBN-10: 0817642048.
    • (2002) Wavelet Transforms and Their Applications
    • Debnath, L.1
  • 12
    • 84455200427 scopus 로고    scopus 로고
    • A Comparison of Pixel-Based and Object-Based Image Analysis with Selected Machine Learning Algorithms for the Classification of Agricultural Landscapes Using SPOT-5 HRG Imagery
    • Duro, D. C., S. E. Franklin, and M. G. Dubé. 2012. “A Comparison of Pixel-Based and Object-Based Image Analysis with Selected Machine Learning Algorithms for the Classification of Agricultural Landscapes Using SPOT-5 HRG Imagery.” Remote Sensing of Environment 118 (2012): 259–272. doi:10.1016/j.rse.2011.11.020.
    • (2012) Remote Sensing of Environment , vol.118 , Issue.2012 , pp. 259-272
    • Duro, D.C.1    Franklin, S.E.2    Dubé, M.G.3
  • 13
    • 84922164360 scopus 로고    scopus 로고
    • Research Systems
    • ENVI. 2009. ENVI 4.7User Guide. Research Systems.
    • (2009) ENVI 4.7User Guide
  • 15
    • 3042661357 scopus 로고    scopus 로고
    • Thematic Map Comparison: Evaluating the Statistical Significance of Differences in Classification Accuracy
    • Foody, G. M. 2004. “Thematic Map Comparison: Evaluating the Statistical Significance of Differences in Classification Accuracy.” Photogrammetric Engineering and Remote Sensing 70 (5): 627–633. doi:10.14358/PERS.70.5.627.
    • (2004) Photogrammetric Engineering and Remote Sensing , vol.70 , Issue.5 , pp. 627-633
    • Foody, G.M.1
  • 17
  • 19
    • 84922178652 scopus 로고    scopus 로고
    • International Conference on Geoinformatics for Spatial Infrastructure Development in Earth and Allied Sciences (GIS-IDEAS) 2010, Hanoi, Vietnam:
    • Horning, N. 2010. “Random Forests: An Algorithm for Image Classification and Generation of Continuous Fields Data Sets.” In International Conference on Geoinformatics for Spatial Infrastructure Development in Earth and Allied Sciences (GIS-IDEAS) 2010, Hanoi, Vietnam, December 9–11. www.wgrass.media.osaka-cu.ac.jp/gisideas10/viewpaper.php?id=342.
    • (2010) Random Forests: An Algorithm for Image Classification and Generation of Continuous Fields Data Sets
    • Horning, N.1
  • 21
    • 82155192892 scopus 로고    scopus 로고
    • Land Cover Classification Using CHRIS/PROBA Images and Multi-Temporal Texture
    • Jin, H. R., P. J. Li, T. Cheng, and B. Song. 2012. “Land Cover Classification Using CHRIS/PROBA Images and Multi-Temporal Texture.” International Journal of Remote Sensing 33 (1): 101–119. doi:10.1080/01431161.2011.584077.
    • (2012) International Journal of Remote Sensing , vol.33 , Issue.1 , pp. 101-119
    • Jin, H.R.1    Li, P.J.2    Cheng, T.3    Song, B.4
  • 22
    • 0345040873 scopus 로고    scopus 로고
    • Classification and Regression by Random Forest
    • Liaw, A., and M. Wiener. 2002. “Classification and Regression by Random Forest.” R News, 2–3, December.
    • (2002) R News , vol.2-3
    • Liaw, A.1    Wiener, M.2
  • 23
    • 5444233513 scopus 로고    scopus 로고
    • A Comparison of Texture Measures for the Per‐Field Classification of Mediterranean Land Cover
    • Lloyd, C. D., S. Berberoglu, P. J. Curran, and P. M. Atkinson. 2004. “A Comparison of Texture Measures for the Per‐Field Classification of Mediterranean Land Cover.” International Journal of Remote Sensing 25: 3943–3965. doi:10.1080/0143116042000192321.
    • (2004) International Journal of Remote Sensing , vol.25 , pp. 3943-3965
    • Lloyd, C.D.1    Berberoglu, S.2    Curran, P.J.3    Atkinson, P.M.4
  • 24
    • 84870344269 scopus 로고    scopus 로고
    • Evaluation of Random Forest Method for Agricultural Crop Classification
    • Ok, A. O., O. Akar, and O. Gungor. 2012. “Evaluation of Random Forest Method for Agricultural Crop Classification.” European Journal of Remote Sensing 45 (3): 421.
    • (2012) European Journal of Remote Sensing , vol.45 , Issue.3 , pp. 421
    • Ok, A.O.1    Akar, O.2    Gungor, O.3
  • 25
    • 13344278660 scopus 로고    scopus 로고
    • Random Forest Classifier for Remote Sensing Classification
    • Pal, M. 2005. “Random Forest Classifier for Remote Sensing Classification.” International Journal of Remote Sensing 26 (1): 217–222. doi:10.1080/01431160412331269698.
    • (2005) International Journal of Remote Sensing , vol.26 , Issue.1 , pp. 217-222
    • Pal, M.1
  • 26
    • 77953934618 scopus 로고    scopus 로고
    • A New Approach for Finding an Appropriate Combination of Texture Parameters for Classification
    • Pathak, V., and O. Dikshit. 2010. “A New Approach for Finding an Appropriate Combination of Texture Parameters for Classification.” Geocarto International 25 (4): 295–313. doi:10.1080/10106040903576195.
    • (2010) Geocarto International , vol.25 , Issue.4 , pp. 295-313
    • Pathak, V.1    Dikshit, O.2
  • 28
    • 79956324768 scopus 로고    scopus 로고
    • Death to Kappa: Birth of Quantity Disagreement and Allocation Disagreement for Accuracy Assessment
    • Pontius, R. G., and M. Millones. 2011. “Death to Kappa: Birth of Quantity Disagreement and Allocation Disagreement for Accuracy Assessment.” International Journal of Remote Sensing 32: 4407–4429. doi:10.1080/01431161.2011.552923.
    • (2011) International Journal of Remote Sensing , vol.32 , pp. 4407-4429
    • Pontius, R.G.1    Millones, M.2
  • 29
    • 33749364893 scopus 로고    scopus 로고
    • The Detection of Current and Potential Hazelnut Plantation Areas in Trabzon North East Turkey using GIS & RS
    • Reis, S., and T. Yomralioglu. 2006. “The Detection of Current and Potential Hazelnut Plantation Areas in Trabzon North East Turkey using GIS & RS.” Journal of Environmental Biology. ISSN 0254-8704.
    • (2006) Journal of Environmental Biology
    • Reis, S.1    Yomralioglu, T.2
  • 31
    • 84876361971 scopus 로고    scopus 로고
    • Gray Level Co-Occurrence Matrices: Generalisation and Some New Features, International Journal of Computer Science
    • Sebastian, V. B., A. Unnikrishnan, and K. Balakrishnan. 2012. “Gray Level Co-Occurrence Matrices: Generalisation and Some New Features, International Journal of Computer Science.” Engineering and Information Technology (IJCSEIT) 2 (2): 151–157.
    • (2012) Engineering and Information Technology (IJCSEIT) , vol.2 , Issue.2 , pp. 151-157
    • Sebastian, V.B.1    Unnikrishnan, A.2    Balakrishnan, K.3
  • 33
    • 77958096283 scopus 로고    scopus 로고
    • Improved Classification of Conservation Tillage Adoption Using High Temporal and Synthetic Satellite Imagery
    • Watts, J. D., S. L. Powell, R. L. Lawrence, and T. Hilker. 2011. “Improved Classification of Conservation Tillage Adoption Using High Temporal and Synthetic Satellite Imagery.” Remote Sensing of Environment 115 (1): 66–75. doi:10.1016/j.rse.2010.08.005.
    • (2011) Remote Sensing of Environment , vol.115 , Issue.1 , pp. 66-75
    • Watts, J.D.1    Powell, S.L.2    Lawrence, R.L.3    Hilker, T.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.