-
1
-
-
33745903481
-
Extreme learning machine: theory and applications
-
Huang G.-B., Zhu Q.-Y., Siew C.-K. Extreme learning machine: theory and applications. Neurocomputing 2006, 70:489-501.
-
(2006)
Neurocomputing
, vol.70
, pp. 489-501
-
-
Huang, G.-B.1
Zhu, Q.-Y.2
Siew, C.-K.3
-
2
-
-
0037312458
-
Differential evolution training algorithm for feed-forward neural networks
-
Ilonen J., Kamarainen J.-K., Lampinen J. Differential evolution training algorithm for feed-forward neural networks. Neural Process. Lett. 2003, 17:93-105.
-
(2003)
Neural Process. Lett.
, vol.17
, pp. 93-105
-
-
Ilonen, J.1
Kamarainen, J.-K.2
Lampinen, J.3
-
5
-
-
10944238040
-
The improvements of BP neural network learning algorithm, WCCC-ICSP 2000
-
W. Jin, J.-L. Zhao, L.-S. Wei, et al., The improvements of BP neural network learning algorithm, WCCC-ICSP 2000, in: Proceedings of the 5th International Conference on Signal Processing Proceedings, 3, 2000 pp. 1647-1649.
-
(2000)
Proceedings of the 5th International Conference on Signal Processing Proceedings
, vol.3
, pp. 1647-1649
-
-
Jin, W.1
Zhao, J.-L.2
Wei, L.-S.3
-
7
-
-
10944272650
-
Extreme learning machine: a new learning scheme of feedforward neural networks
-
G.-B. Huang, Q.-Y. Zhu, C.-K. Siew, Extreme learning machine: a new learning scheme of feedforward neural networks, in: Proceedings of the IEEE International Joint Conference on Neural Networks, 2. 2004, pp. 985-990.
-
(2004)
Proceedings of the IEEE International Joint Conference on Neural Networks
, vol.2
, pp. 985-990
-
-
Huang, G.-B.1
Zhu, Q.-Y.2
Siew, C.-K.3
-
8
-
-
0036565527
-
Communication channel equalization using complex-valued minimal radial basis function neural networks
-
Deng J.-P., Sundararajan N., Saratchandran P. Communication channel equalization using complex-valued minimal radial basis function neural networks. IEEE Trans. Neural Netw. 2002, 13:687-696.
-
(2002)
IEEE Trans. Neural Netw.
, vol.13
, pp. 687-696
-
-
Deng, J.-P.1
Sundararajan, N.2
Saratchandran, P.3
-
9
-
-
77955430431
-
A new online learning algorithm for structure-adjustable extreme learning machine
-
Li G., Liu M., Dong M. A new online learning algorithm for structure-adjustable extreme learning machine. Comput. Math. Appl. 2010, 60:377-389.
-
(2010)
Comput. Math. Appl.
, vol.60
, pp. 377-389
-
-
Li, G.1
Liu, M.2
Dong, M.3
-
10
-
-
34548158996
-
Convex incremental extreme learning machine
-
Huang G.-B., Chen L. Convex incremental extreme learning machine. Neurocomputing 2007, 70:3056-3062.
-
(2007)
Neurocomputing
, vol.70
, pp. 3056-3062
-
-
Huang, G.-B.1
Chen, L.2
-
11
-
-
80051670315
-
Parameter-insensitive kernel in extreme learning for non-linear support vector regression
-
Frénay B., Verleysen M. Parameter-insensitive kernel in extreme learning for non-linear support vector regression. Neurocomputing 2011, 74:2526-2531.
-
(2011)
Neurocomputing
, vol.74
, pp. 2526-2531
-
-
Frénay, B.1
Verleysen, M.2
-
12
-
-
0031673055
-
Upper bounds on the number of hidden neurons in feedforward networks with arbitrary bounded nonlinear activation functions
-
Huang G.-B., Babri H.A. Upper bounds on the number of hidden neurons in feedforward networks with arbitrary bounded nonlinear activation functions. IEEE Trans. Neural Netw. 1998, 9:224-229.
-
(1998)
IEEE Trans. Neural Netw.
, vol.9
, pp. 224-229
-
-
Huang, G.-B.1
Babri, H.A.2
-
13
-
-
73949154686
-
OP-ELM: optimally pruned extreme learning machine
-
Miche Y., Sorjamaa A., Bas P., et al. OP-ELM: optimally pruned extreme learning machine. IEEE Trans. Neural Netw. 2010, 21:158-162.
-
(2010)
IEEE Trans. Neural Netw.
, vol.21
, pp. 158-162
-
-
Miche, Y.1
Sorjamaa, A.2
Bas, P.3
-
14
-
-
58849132454
-
OP-ELM: theory, experiments and a toolbox, artificial neural networks
-
(2008 ed), Springer
-
Y. Miche, A. Sorjamaa, A. Lendasse, OP-ELM: theory, experiments and a toolbox, artificial neural networks, in: Proceedings of the International Conference on Artificial Neural Networks (2008 ed), Springer, 2008, pp. 145-154.
-
(2008)
Proceedings of the International Conference on Artificial Neural Networks
, pp. 145-154
-
-
Miche, Y.1
Sorjamaa, A.2
Lendasse, A.3
-
15
-
-
84887010852
-
A methodology for building regression models using extreme learning machine: OP-ELM
-
Y. Miche, P. Bas, C. Jutten, et al., A methodology for building regression models using extreme learning machine: OP-ELM, in: Proceedings of the European Symposium on Artificial Neural Networks (ESANN), 2008, pp. 247-252.
-
(2008)
Proceedings of the European Symposium on Artificial Neural Networks (ESANN)
, pp. 247-252
-
-
Miche, Y.1
Bas, P.2
Jutten, C.3
-
17
-
-
56049098499
-
Sales forecasting using extreme learning machine with applications in fashion retailing
-
Sun Z.-L., Choi T.-M., Au K.-F., et al. Sales forecasting using extreme learning machine with applications in fashion retailing. Decis Support Syst. 2008, 46:411-419.
-
(2008)
Decis Support Syst.
, vol.46
, pp. 411-419
-
-
Sun, Z.-L.1
Choi, T.-M.2
Au, K.-F.3
-
18
-
-
84944485006
-
The one-sided barrier problem for Gaussian noise
-
Slepian D. The one-sided barrier problem for Gaussian noise. Bell Syst. Tech. J. 1962, 41:463-501.
-
(1962)
Bell Syst. Tech. J.
, vol.41
, pp. 463-501
-
-
Slepian, D.1
-
19
-
-
70450194207
-
Adaptive ensemble models of extreme learning machines for time series prediction, artificial neural networks
-
(2009 ed.), Springer
-
M. van Heeswijk, Y. Miche, T. Lindh-Knuutila, et al., Adaptive ensemble models of extreme learning machines for time series prediction, artificial neural networks, in: Proceedings of the International Conference on Artificial Neural Networks (2009 ed.), Springer, 2009, pp. 305-314.
-
(2009)
Proceedings of the International Conference on Artificial Neural Networks
, pp. 305-314
-
-
van Heeswijk, M.1
Miche, Y.2
Lindh-Knuutila, T.3
-
20
-
-
84857240451
-
Least-squares migration/inversion of blended data
-
SEG Technical Program Expanded Abstracts
-
Y. Tang, B. Biondi, Least-squares migration/inversion of blended data, SEG Technical Program Expanded Abstracts, 2009, pp. 2859-2863.
-
(2009)
, pp. 2859-2863
-
-
Tang, Y.1
Biondi, B.2
-
21
-
-
33646231022
-
Multiresponse sparse regression with application to multidimensional scaling, artificial neural networks: formal models and their applications
-
(2005 ed), Springer
-
T. Similä, J. Tikka, Multiresponse sparse regression with application to multidimensional scaling, artificial neural networks: formal models and their applications, in: Proceedings of the International Conference on Artificial Neural Networks (2005 ed), Springer, 2005, pp. 97-102.
-
(2005)
Proceedings of the International Conference on Artificial Neural Networks
, pp. 97-102
-
-
Similä, T.1
Tikka, J.2
-
22
-
-
84880868490
-
Genetic algorithm based selective neural network ensemble, IJCAI-01
-
Seattle, Washington, August 4-10
-
Z.-H. Zhou. J.-X. Wu, J. Yuan, et al., Genetic algorithm based selective neural network ensemble, IJCAI-01, in: Proceedings of the Seventeenth International Joint Conference on Artificial Intelligence, Seattle, Washington, August 4-10, 2001, p. 797.
-
(2001)
Proceedings of the Seventeenth International Joint Conference on Artificial Intelligence
, pp. 797
-
-
Zhou, Z.-H.1
Wu, J.-X.2
Yuan, J.3
-
23
-
-
70349312678
-
Selective ensemble Under Regularization Framework Multiple Classifier Systems
-
Reykjavik, Iceland
-
N. Li, Z.-H. Zhou, Selective ensemble Under Regularization Framework Multiple Classifier Systems, in: Proceedings of the 8th International Workshop on Multiple Classifier Systems, Reykjavik, Iceland, 5519, 2009, pp. 293-303.
-
(2009)
Proceedings of the 8th International Workshop on Multiple Classifier Systems
, vol.5519
, pp. 293-303
-
-
Li, N.1
Zhou, Z.-H.2
-
25
-
-
21244456913
-
Extreme learning machine: RBF network case, control, automation
-
G.-B. Huang, C.-K. Siew, Extreme learning machine: RBF network case, control, automation, in: Proceedings of the 8th Robotics and Vision Conference (ICARCV), 2, 2004, pp. 1029-1036.
-
(2004)
Proceedings of the 8th Robotics and Vision Conference (ICARCV)
, vol.2
, pp. 1029-1036
-
-
Huang, G.-B.1
Siew, C.-K.2
-
26
-
-
10944272650
-
Extreme learning machine: a new learning scheme of feedforward neural networks
-
G.-B. Huang, Q.-Y. Zhu, C.-K. Siew, Extreme learning machine: a new learning scheme of feedforward neural networks, in: Proceedings of the IEEE International Joint Conference on Neural Networks, 2, 2004, pp. 985-990.
-
(2004)
Proceedings of the IEEE International Joint Conference on Neural Networks
, vol.2
, pp. 985-990
-
-
Huang, G.-B.1
Zhu, Q.-Y.2
Siew, C.-K.3
-
27
-
-
0037361264
-
Learning capability and storage capacity of two-hidden-layer feedforward networks
-
Huang G.-B. Learning capability and storage capacity of two-hidden-layer feedforward networks. IEEE Trans. Neural Netw. 2003, 14:274-281.
-
(2003)
IEEE Trans. Neural Netw.
, vol.14
, pp. 274-281
-
-
Huang, G.-B.1
-
30
-
-
34250098040
-
A generalized conjugate gradient, least square method
-
Axelsson O. A generalized conjugate gradient, least square method. Numer. Math. 1987, 51:209-227.
-
(1987)
Numer. Math.
, vol.51
, pp. 209-227
-
-
Axelsson, O.1
-
31
-
-
0001904633
-
Identification of distributed parameter systems: about the output least square method, its implementation and identifiability
-
G. Chavent, Identification of distributed parameter systems: about the output least square method, its implementation and identifiability, in: Proceedings of the 5th IFAC Symposium on Identification and System Parameter Estimation, 1979, pp. 85-97.
-
(1979)
Proceedings of the 5th IFAC Symposium on Identification and System Parameter Estimation
, pp. 85-97
-
-
Chavent, G.1
-
32
-
-
0030211964
-
Bagging predictors
-
Breiman L. Bagging predictors. Mach. Learn. 1996, 24:123-140.
-
(1996)
Mach. Learn.
, vol.24
, pp. 123-140
-
-
Breiman, L.1
-
34
-
-
0033231649
-
Ensemble modelling or selecting the best model: Many could be better than one
-
Barai S., Reich Y. Ensemble modelling or selecting the best model: Many could be better than one. Artif. Intell. Eng. Des. Anal. Manuf. 1999, 13:377-386.
-
(1999)
Artif. Intell. Eng. Des. Anal. Manuf.
, vol.13
, pp. 377-386
-
-
Barai, S.1
Reich, Y.2
-
35
-
-
84871280437
-
Selective ensemble extreme learning machine modeling of effluent quality in wastewater treatment plants
-
Zhao L.-J., Chai T.-Y., Yuan D.-C. Selective ensemble extreme learning machine modeling of effluent quality in wastewater treatment plants. Int. J. Autom. Comput. 2012, 9:627-633.
-
(2012)
Int. J. Autom. Comput.
, vol.9
, pp. 627-633
-
-
Zhao, L.-J.1
Chai, T.-Y.2
Yuan, D.-C.3
-
36
-
-
11444258802
-
Ensemble of GA based selective neural network ensembles
-
Shanghai, China
-
J.-X. Wu, Z.-H. Zhou, and Z.-Q. Chen, et al., Ensemble of GA based selective neural network ensembles, in: Proceedings of the 8th International Conference on Neural Information Processing, Shanghai, China, 3, 2001, pp. 1477-1483.
-
(2001)
Proceedings of the 8th International Conference on Neural Information Processing
, vol.3
, pp. 1477-1483
-
-
Wu, J.-X.1
Zhou, Z.-H.2
Chen, Z.-Q.3
-
38
-
-
85156192015
-
Generating accurate and diverse members of a neural-network ensemble
-
MIT Press, Cambridge, MA
-
D.W. Opitz, J.W. Shavlik, Generating accurate and diverse members of a neural-network ensemble, in: Advances in Neural Information Processing Systems, 8, MIT Press, Cambridge, MA, 1996, pp. 535-541.
-
(1996)
Advances in Neural Information Processing Systems
, vol.8
, pp. 535-541
-
-
Opitz, D.W.1
Shavlik, J.W.2
-
39
-
-
33745918399
-
Universal approximation using incremental constructive feedforward networks with random hidden nodes
-
Huang G.B., Chen L., Siew C.K. Universal approximation using incremental constructive feedforward networks with random hidden nodes. IEEE Trans. Neural Netw. 2006, 17:4.
-
(2006)
IEEE Trans. Neural Netw.
, vol.17
, pp. 4
-
-
Huang, G.B.1
Chen, L.2
Siew, C.K.3
|