메뉴 건너뛰기




Volumn 149, Issue Part A, 2015, Pages 285-294

LARSEN-ELM: Selective ensemble of extreme learning machines using LARS for blended data

Author keywords

Extreme learning machine; LARS algorithm; LARSEN ELM; Robustness; Selective ensemble

Indexed keywords

GENETIC ALGORITHMS; KNOWLEDGE ACQUISITION; LEARNING ALGORITHMS; ROBUSTNESS (CONTROL SYSTEMS);

EID: 84922018056     PISSN: 09252312     EISSN: 18728286     Source Type: Journal    
DOI: 10.1016/j.neucom.2014.01.069     Document Type: Article
Times cited : (17)

References (39)
  • 1
    • 33745903481 scopus 로고    scopus 로고
    • Extreme learning machine: theory and applications
    • Huang G.-B., Zhu Q.-Y., Siew C.-K. Extreme learning machine: theory and applications. Neurocomputing 2006, 70:489-501.
    • (2006) Neurocomputing , vol.70 , pp. 489-501
    • Huang, G.-B.1    Zhu, Q.-Y.2    Siew, C.-K.3
  • 2
    • 0037312458 scopus 로고    scopus 로고
    • Differential evolution training algorithm for feed-forward neural networks
    • Ilonen J., Kamarainen J.-K., Lampinen J. Differential evolution training algorithm for feed-forward neural networks. Neural Process. Lett. 2003, 17:93-105.
    • (2003) Neural Process. Lett. , vol.17 , pp. 93-105
    • Ilonen, J.1    Kamarainen, J.-K.2    Lampinen, J.3
  • 8
    • 0036565527 scopus 로고    scopus 로고
    • Communication channel equalization using complex-valued minimal radial basis function neural networks
    • Deng J.-P., Sundararajan N., Saratchandran P. Communication channel equalization using complex-valued minimal radial basis function neural networks. IEEE Trans. Neural Netw. 2002, 13:687-696.
    • (2002) IEEE Trans. Neural Netw. , vol.13 , pp. 687-696
    • Deng, J.-P.1    Sundararajan, N.2    Saratchandran, P.3
  • 9
    • 77955430431 scopus 로고    scopus 로고
    • A new online learning algorithm for structure-adjustable extreme learning machine
    • Li G., Liu M., Dong M. A new online learning algorithm for structure-adjustable extreme learning machine. Comput. Math. Appl. 2010, 60:377-389.
    • (2010) Comput. Math. Appl. , vol.60 , pp. 377-389
    • Li, G.1    Liu, M.2    Dong, M.3
  • 10
    • 34548158996 scopus 로고    scopus 로고
    • Convex incremental extreme learning machine
    • Huang G.-B., Chen L. Convex incremental extreme learning machine. Neurocomputing 2007, 70:3056-3062.
    • (2007) Neurocomputing , vol.70 , pp. 3056-3062
    • Huang, G.-B.1    Chen, L.2
  • 11
    • 80051670315 scopus 로고    scopus 로고
    • Parameter-insensitive kernel in extreme learning for non-linear support vector regression
    • Frénay B., Verleysen M. Parameter-insensitive kernel in extreme learning for non-linear support vector regression. Neurocomputing 2011, 74:2526-2531.
    • (2011) Neurocomputing , vol.74 , pp. 2526-2531
    • Frénay, B.1    Verleysen, M.2
  • 12
    • 0031673055 scopus 로고    scopus 로고
    • Upper bounds on the number of hidden neurons in feedforward networks with arbitrary bounded nonlinear activation functions
    • Huang G.-B., Babri H.A. Upper bounds on the number of hidden neurons in feedforward networks with arbitrary bounded nonlinear activation functions. IEEE Trans. Neural Netw. 1998, 9:224-229.
    • (1998) IEEE Trans. Neural Netw. , vol.9 , pp. 224-229
    • Huang, G.-B.1    Babri, H.A.2
  • 13
    • 73949154686 scopus 로고    scopus 로고
    • OP-ELM: optimally pruned extreme learning machine
    • Miche Y., Sorjamaa A., Bas P., et al. OP-ELM: optimally pruned extreme learning machine. IEEE Trans. Neural Netw. 2010, 21:158-162.
    • (2010) IEEE Trans. Neural Netw. , vol.21 , pp. 158-162
    • Miche, Y.1    Sorjamaa, A.2    Bas, P.3
  • 17
    • 56049098499 scopus 로고    scopus 로고
    • Sales forecasting using extreme learning machine with applications in fashion retailing
    • Sun Z.-L., Choi T.-M., Au K.-F., et al. Sales forecasting using extreme learning machine with applications in fashion retailing. Decis Support Syst. 2008, 46:411-419.
    • (2008) Decis Support Syst. , vol.46 , pp. 411-419
    • Sun, Z.-L.1    Choi, T.-M.2    Au, K.-F.3
  • 18
    • 84944485006 scopus 로고
    • The one-sided barrier problem for Gaussian noise
    • Slepian D. The one-sided barrier problem for Gaussian noise. Bell Syst. Tech. J. 1962, 41:463-501.
    • (1962) Bell Syst. Tech. J. , vol.41 , pp. 463-501
    • Slepian, D.1
  • 20
    • 84857240451 scopus 로고    scopus 로고
    • Least-squares migration/inversion of blended data
    • SEG Technical Program Expanded Abstracts
    • Y. Tang, B. Biondi, Least-squares migration/inversion of blended data, SEG Technical Program Expanded Abstracts, 2009, pp. 2859-2863.
    • (2009) , pp. 2859-2863
    • Tang, Y.1    Biondi, B.2
  • 21
    • 33646231022 scopus 로고    scopus 로고
    • Multiresponse sparse regression with application to multidimensional scaling, artificial neural networks: formal models and their applications
    • (2005 ed), Springer
    • T. Similä, J. Tikka, Multiresponse sparse regression with application to multidimensional scaling, artificial neural networks: formal models and their applications, in: Proceedings of the International Conference on Artificial Neural Networks (2005 ed), Springer, 2005, pp. 97-102.
    • (2005) Proceedings of the International Conference on Artificial Neural Networks , pp. 97-102
    • Similä, T.1    Tikka, J.2
  • 27
    • 0037361264 scopus 로고    scopus 로고
    • Learning capability and storage capacity of two-hidden-layer feedforward networks
    • Huang G.-B. Learning capability and storage capacity of two-hidden-layer feedforward networks. IEEE Trans. Neural Netw. 2003, 14:274-281.
    • (2003) IEEE Trans. Neural Netw. , vol.14 , pp. 274-281
    • Huang, G.-B.1
  • 30
    • 34250098040 scopus 로고
    • A generalized conjugate gradient, least square method
    • Axelsson O. A generalized conjugate gradient, least square method. Numer. Math. 1987, 51:209-227.
    • (1987) Numer. Math. , vol.51 , pp. 209-227
    • Axelsson, O.1
  • 31
    • 0001904633 scopus 로고
    • Identification of distributed parameter systems: about the output least square method, its implementation and identifiability
    • G. Chavent, Identification of distributed parameter systems: about the output least square method, its implementation and identifiability, in: Proceedings of the 5th IFAC Symposium on Identification and System Parameter Estimation, 1979, pp. 85-97.
    • (1979) Proceedings of the 5th IFAC Symposium on Identification and System Parameter Estimation , pp. 85-97
    • Chavent, G.1
  • 32
    • 0030211964 scopus 로고    scopus 로고
    • Bagging predictors
    • Breiman L. Bagging predictors. Mach. Learn. 1996, 24:123-140.
    • (1996) Mach. Learn. , vol.24 , pp. 123-140
    • Breiman, L.1
  • 34
    • 0033231649 scopus 로고    scopus 로고
    • Ensemble modelling or selecting the best model: Many could be better than one
    • Barai S., Reich Y. Ensemble modelling or selecting the best model: Many could be better than one. Artif. Intell. Eng. Des. Anal. Manuf. 1999, 13:377-386.
    • (1999) Artif. Intell. Eng. Des. Anal. Manuf. , vol.13 , pp. 377-386
    • Barai, S.1    Reich, Y.2
  • 35
    • 84871280437 scopus 로고    scopus 로고
    • Selective ensemble extreme learning machine modeling of effluent quality in wastewater treatment plants
    • Zhao L.-J., Chai T.-Y., Yuan D.-C. Selective ensemble extreme learning machine modeling of effluent quality in wastewater treatment plants. Int. J. Autom. Comput. 2012, 9:627-633.
    • (2012) Int. J. Autom. Comput. , vol.9 , pp. 627-633
    • Zhao, L.-J.1    Chai, T.-Y.2    Yuan, D.-C.3
  • 38
    • 85156192015 scopus 로고    scopus 로고
    • Generating accurate and diverse members of a neural-network ensemble
    • MIT Press, Cambridge, MA
    • D.W. Opitz, J.W. Shavlik, Generating accurate and diverse members of a neural-network ensemble, in: Advances in Neural Information Processing Systems, 8, MIT Press, Cambridge, MA, 1996, pp. 535-541.
    • (1996) Advances in Neural Information Processing Systems , vol.8 , pp. 535-541
    • Opitz, D.W.1    Shavlik, J.W.2
  • 39
    • 33745918399 scopus 로고    scopus 로고
    • Universal approximation using incremental constructive feedforward networks with random hidden nodes
    • Huang G.B., Chen L., Siew C.K. Universal approximation using incremental constructive feedforward networks with random hidden nodes. IEEE Trans. Neural Netw. 2006, 17:4.
    • (2006) IEEE Trans. Neural Netw. , vol.17 , pp. 4
    • Huang, G.B.1    Chen, L.2    Siew, C.K.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.