메뉴 건너뛰기




Volumn 38, Issue 3, 2015, Pages 505-516

Permanence of a delayed SIR epidemic model with general nonlinear incidence rate

Author keywords

Hopf bifurcation; Lyapunov functional; Permanence; SIR model; Stability switches

Indexed keywords

BIFURCATION (MATHEMATICS); DISEASE CONTROL; EPIDEMIOLOGY; LYAPUNOV FUNCTIONS;

EID: 84921439870     PISSN: 01704214     EISSN: 10991476     Source Type: Journal    
DOI: 10.1002/mma.3083     Document Type: Article
Times cited : (7)

References (24)
  • 1
    • 84860842742 scopus 로고    scopus 로고
    • Global stability of SIRS epidemic models with a class of nonlinear incidence rates and distributed delays
    • Enatsu Y, Nakata Y, Muroya Y. Global stability of SIRS epidemic models with a class of nonlinear incidence rates and distributed delays. Acta Mathematica Scientia 2012; 32(3):851-865, DOI 10.1016/S0252-9602(12)60066-6.
    • (2012) Acta Mathematica Scientia , vol.32 , Issue.3 , pp. 851-865
    • Enatsu, Y.1    Nakata, Y.2    Muroya, Y.3
  • 2
    • 77954623221 scopus 로고    scopus 로고
    • Global stability for delay SIR and SEIR epidemic models with nonlinear incidence rate
    • Huang G, Takeuchi Y, Ma W.B., Wei DJ. Global stability for delay SIR and SEIR epidemic models with nonlinear incidence rate. Bulletin of Mathematical Biology 2010; 72(5):1192-1207, DOI 10.1007/S11538-009-9487-6.
    • (2010) Bulletin of Mathematical Biology , vol.72 , Issue.5 , pp. 1192-1207
    • Huang, G.1    Takeuchi, Y.2    Ma, W.B.3    Wei, D.J.4
  • 3
    • 0031167217 scopus 로고    scopus 로고
    • Convergence results in SIR epidemic models with varying population sizes
    • Beretta E, Takeuchi Y. Convergence results in SIR epidemic models with varying population sizes. Nonlinear Analysis: Theory Method and Applications 1997; 28(12):1909-21, DOI 10.1016/S0362-546X(96)00035-1.
    • (1997) Nonlinear Analysis: Theory Method and Applications , vol.28 , Issue.12 , pp. 1909-1921
    • Beretta, E.1    Takeuchi, Y.2
  • 5
    • 78651244615 scopus 로고    scopus 로고
    • Global stability of SIR epidemic models with a wide class of nonlinear incidence rates and distributed delays
    • Enatsu Y, Nakata Y, Muroya Y. Global stability of SIR epidemic models with a wide class of nonlinear incidence rates and distributed delays. Discrete and Continuous Dynamical Systems B 2011; 15(1):61-74, DOI 10.3934/dcdsb.2011.15.61.
    • (2011) Discrete and Continuous Dynamical Systems B , vol.15 , Issue.1 , pp. 61-74
    • Enatsu, Y.1    Nakata, Y.2    Muroya, Y.3
  • 6
    • 84865529744 scopus 로고    scopus 로고
    • Stability analysis of a delayed SIRS epidemic model with vaccination and nonlinear incidence
    • Tian XH. Stability analysis of a delayed SIRS epidemic model with vaccination and nonlinear incidence. International Journal of Biomathematics 2012; 5(6):1250050-1-18, DOI 10.1142/S1793524512500507.
    • (2012) International Journal of Biomathematics , vol.5 , Issue.6 , pp. 1-18
    • Tian, X.H.1
  • 7
    • 27144540965 scopus 로고    scopus 로고
    • Viral infection model with periodic lytic immune response
    • Wang K, Wang WD, Liu XN. Viral infection model with periodic lytic immune response. Chaos, Solitons & Fractals 2006; 28(1):90-9, DOI 10.1016/j.chaos.2005.05.003.
    • (2006) Chaos, Solitons & Fractals , vol.28 , Issue.1 , pp. 90-99
    • Wang, K.1    Wang, W.D.2    Liu, X.N.3
  • 8
    • 61549085953 scopus 로고    scopus 로고
    • Analysis of a delayed SIR model with nonlinear incidence rate
    • Zhang JZ, Jin Z, Liu Q.X., Zhang ZY. Analysis of a delayed SIR model with nonlinear incidence rate. Discrete Dynamic in Nature and Society 2008; 2008(2008):1-16, DOI 10.1155/2008/636153.
    • (2008) Discrete Dynamic in Nature and Society , vol.2008 , Issue.2008 , pp. 1-16
    • Zhang, J.Z.1    Jin, Z.2    Liu, Q.X.3    Zhang, Z.Y.4
  • 9
    • 18444376767 scopus 로고    scopus 로고
    • Global stability of a SEIR epidemic model with infectious force in latent, infected and immune period
    • Li GH, Jin Z. Global stability of a SEIR epidemic model with infectious force in latent, infected and immune period. Chaos, Solitons & Fractals 2005; 25(5):1177-84, DOI 10.1016/j.chaos.2004.11.062.
    • (2005) Chaos, Solitons & Fractals , vol.25 , Issue.5 , pp. 1177-1184
    • Li, G.H.1    Jin, Z.2
  • 10
  • 11
    • 80052031092 scopus 로고    scopus 로고
    • On the global stability of a delayed epidemic model with transport-related infection
    • Nakata Y. On the global stability of a delayed epidemic model with transport-related infection. Nonlinear Analysis: Real World Applications 2011; 12(6):3028-3034, DOI 10.1016/j.nonrwa.2011.05.004.
    • (2011) Nonlinear Analysis: Real World Applications , vol.12 , Issue.6 , pp. 3028-3034
    • Nakata, Y.1
  • 12
    • 33746833233 scopus 로고    scopus 로고
    • Analysis of a delayed epidemic model with pulse vaccination and saturation incidence
    • Gao SJ, Chen LS, Nieto J.J., Torres A. Analysis of a delayed epidemic model with pulse vaccination and saturation incidence. Vaccine 2006; 24(35-36):6037-6045, DOI 10.1016/j.vaccine.2006.05.018.
    • (2006) Vaccine , vol.24 , Issue.35-36 , pp. 6037-6045
    • Gao, S.J.1    Chen, L.S.2    Nieto, J.J.3    Torres, A.4
  • 13
    • 84859101715 scopus 로고    scopus 로고
    • Lyapunov functional techniques for the global stability analysis of a delayed SIRS epidemic model
    • Enatsu Y, Nakata Y, Muroya Y. Lyapunov functional techniques for the global stability analysis of a delayed SIRS epidemic model. Nonlinear Analysis: Real World Applications 2012; 13(5):2120-2133, DOI 10.1016/j.nonrwa.2012.01.007.
    • (2012) Nonlinear Analysis: Real World Applications , vol.13 , Issue.5 , pp. 2120-2133
    • Enatsu, Y.1    Nakata, Y.2    Muroya, Y.3
  • 14
    • 0033209987 scopus 로고    scopus 로고
    • Interaction of matiration delay and nonlinear birth in population and epidemic models
    • Cooke K, van den Driessche P, Zou XF. Interaction of matiration delay and nonlinear birth in population and epidemic models. Journal of Mathematical Biology 1999; 39(4):332-352, DOI 10.1007/s00285-002-0162-x.
    • (1999) Journal of Mathematical Biology , vol.39 , Issue.4 , pp. 332-352
    • Cooke, K.1    Van Den Driessche, P.2    Zou, X.F.3
  • 15
    • 43649100484 scopus 로고    scopus 로고
    • Global behavior and permanence of SIRS epidemic model with time delay
    • Zhang TL, Teng ZD. Global behavior and permanence of SIRS epidemic model with time delay. Nonlinear Analysis: Real World Applications 2008; 9(4):1409-1424, DOI 10.1016/j.nonrwa.2007.03.010.
    • (2008) Nonlinear Analysis: Real World Applications , vol.9 , Issue.4 , pp. 1409-1424
    • Zhang, T.L.1    Teng, Z.D.2
  • 16
    • 13644275724 scopus 로고    scopus 로고
    • Global properties of a delayed SIR model with temporary immunity and nonlinear incidence rate
    • Kyrychko YN, Konstantin BB. Global properties of a delayed SIR model with temporary immunity and nonlinear incidence rate. Nonlinear Analysis: Real World Applications 2005; 6(3):495-507, DOI 10.1016/j.nonrwa.2004.10.001.
    • (2005) Nonlinear Analysis: Real World Applications , vol.6 , Issue.3 , pp. 495-507
    • Kyrychko, Y.N.1    Konstantin, B.B.2
  • 17
    • 34548618836 scopus 로고    scopus 로고
    • Stability and bifurcation analysis in a delayed SIR model
    • Jiang ZC, Wei JJ. Stability and bifurcation analysis in a delayed SIR model. Chaos, Solitons & Fractals 2008; 35(3):609-619, DOI 10.1016/j.chaos.2006.05.045.
    • (2008) Chaos, Solitons & Fractals , vol.35 , Issue.3 , pp. 609-619
    • Jiang, Z.C.1    Wei, J.J.2
  • 18
    • 41849145363 scopus 로고    scopus 로고
    • Global stability of a delayed SIRS model with temporary immunity
    • Wen LS, Yang XF. Global stability of a delayed SIRS model with temporary immunity. Chaos, Solitons & Fractals 2008; 38(1):221-226, DOI 10.1016/j.chaos.2006.11.010.
    • (2008) Chaos, Solitons & Fractals , vol.38 , Issue.1 , pp. 221-226
    • Wen, L.S.1    Yang, X.F.2
  • 19
    • 77950845517 scopus 로고    scopus 로고
    • Global stability of a delayed SIRS epidemic model with saturation incidence and temporary immunity
    • Xu R, Ma ZE, Wang ZP. Global stability of a delayed SIRS epidemic model with saturation incidence and temporary immunity. Computers and Mathematics with Applications 2010; 59(9):3211-3221, DOI 10.1016/j.camwa.2010.03.009.
    • (2010) Computers and Mathematics with Applications , vol.59 , Issue.9 , pp. 3211-3221
    • Xu, R.1    Ma, Z.E.2    Wang, Z.P.3
  • 20
    • 1842465386 scopus 로고    scopus 로고
    • On the zeros of transcendental functions with applications to stability of delay differential equations with two delays
    • Ruan SG, Wei JJ. On the zeros of transcendental functions with applications to stability of delay differential equations with two delays. Dynamics of Continuous, Discrete and Impulsive Systems 2003; 10(6):863-874, DOI 10.1093/imammb/18.1.41.
    • (2003) Dynamics of Continuous, Discrete and Impulsive Systems , vol.10 , Issue.6 , pp. 863-874
    • Ruan, S.G.1    Wei, J.J.2
  • 21
    • 0036373967 scopus 로고    scopus 로고
    • Geometric stability switch criteria in delay differential systems with delay dependent parameters
    • Beretta E, Kuang Y. Geometric stability switch criteria in delay differential systems with delay dependent parameters. SIAM Journal on Mathematical Analysis 2002; 33(5):1144-1165, DOI 10.1137/S0036141000376086.
    • (2002) SIAM Journal on Mathematical Analysis , vol.33 , Issue.5 , pp. 1144-1165
    • Beretta, E.1    Kuang, Y.2
  • 23
    • 31244431921 scopus 로고    scopus 로고
    • Global behavior of an SEIRS epidemic model with time delays
    • Wang WD. Global behavior of an SEIRS epidemic model with time delays. Apllied Mathematics Letters 2002; 15(4):423-428, DOI 10.1016/S0893-9659(01)00153-7.
    • (2002) Apllied Mathematics Letters , vol.15 , Issue.4 , pp. 423-428
    • Wang, W.D.1
  • 24
    • 10644240707 scopus 로고    scopus 로고
    • Global stability of an SIR epidemic model with time delay
    • Ma WB, Song M. Global stability of an SIR epidemic model with time delay. Applied Mathematics Letters 2004; 17(10):1141-1145, DOI 10.1016/j.aml.2003.11.005.
    • (2004) Applied Mathematics Letters , vol.17 , Issue.10 , pp. 1141-1145
    • Ma, W.B.1    Song, M.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.