메뉴 건너뛰기




Volumn 16, Issue 7, 2014, Pages 1265-1273

Industrial fire simulation and uncertainty associated with the Emission Dispersion Model

Author keywords

Emission Dispersion Model; Fire; Monte Carlo analysis; Uncertainty

Indexed keywords

DISPERSION (WAVES); FIRES; INDUSTRIAL EMISSIONS; MONTE CARLO METHODS; NITROGEN OXIDES; OIL TANKS; VISCOSITY; WIND;

EID: 84921067560     PISSN: 1618954X     EISSN: 16189558     Source Type: Journal    
DOI: 10.1007/s10098-014-0792-x     Document Type: Article
Times cited : (9)

References (40)
  • 1
    • 84921066579 scopus 로고    scopus 로고
    • Modeling uncertainty in risk assessment using Double Monte Carlo method
    • Ali T, Boruah H, Dutta P (2012) Modeling uncertainty in risk assessment using Double Monte Carlo method. Int J Eng Innov Technol 1(4):114-118
    • (2012) Int J Eng Innov Technol , vol.1 , Issue.4 , pp. 114-118
    • Ali, T.1    Boruah, H.2    Dutta, P.3
  • 2
    • 55249098600 scopus 로고    scopus 로고
    • Future research challenges for incorporation of uncertainty in environmental and ecological decision-making
    • 10.1016/j.ecolmodel.2008.07.015
    • Ascough JC, Maier HR, Ravalico JK, Strudley MW (2008) Future research challenges for incorporation of uncertainty in environmental and ecological decision-making. Ecol Model 219:383-399. doi: 10.1016/j.ecolmodel.2008.07.015
    • (2008) Ecol Model , vol.219 , pp. 383-399
    • Ascough, J.C.1    Maier, H.R.2    Ravalico, J.K.3    Strudley, M.W.4
  • 4
    • 84886414470 scopus 로고    scopus 로고
    • Uncertainty analysis of industrial fire effects simulation
    • 10.3303/CET1335237
    • Chettouh S, Hamzi R, Innal F, Haddad D (2013) Uncertainty analysis of industrial fire effects simulation. Chem Eng Trans 35:1423-1428. doi: 10.3303/CET1335237
    • (2013) Chem Eng Trans , vol.35 , pp. 1423-1428
    • Chettouh, S.1    Hamzi, R.2    Innal, F.3    Haddad, D.4
  • 6
    • 0034284752 scopus 로고    scopus 로고
    • Uncertainty, ensembles and air quality dispersion modeling: Applications and challenges
    • 10.1016/S1352-2310(00)00141-2 1:CAS:528:DC%2BD3cXmtVCgurk%3D
    • Dabberdt WF, Miller E (2000) Uncertainty, ensembles and air quality dispersion modeling: applications and challenges. Atmos Environ 34(27):4667-4673. doi: 10.1016/S1352-2310(00)00141-2
    • (2000) Atmos Environ , vol.34 , Issue.27 , pp. 4667-4673
    • Dabberdt, W.F.1    Miller, E.2
  • 7
    • 42749096245 scopus 로고    scopus 로고
    • How to measure uncertainties in environmental risk assessment
    • 10.1016/j.trac.2008.02.005 1:CAS:528:DC%2BD1cXlvVWgur8%3D
    • Darbra RM, Eljarrat E, Barceló D (2008) How to measure uncertainties in environmental risk assessment. TrAC, Trends Anal Chem 27(4):377-385. doi: 10.1016/j.trac.2008.02.005
    • (2008) TrAC, Trends Anal Chem , vol.27 , Issue.4 , pp. 377-385
    • Darbra, R.M.1    Eljarrat, E.2    Barceló, D.3
  • 8
    • 85063017482 scopus 로고    scopus 로고
    • Phast version 6.7 software. London, UK: DNV Software, Available from, Accessed 20 Aug 2012
    • DNV. (2012). Phast version 6.7 software. London, UK: DNV Software, Available from http://www.dnv.com/software. Accessed 20 Aug 2012
    • (2012) DNV
  • 11
    • 84876959857 scopus 로고    scopus 로고
    • Methodology for global sensitivity analysis of consequence models
    • 10.1016/j.jlp.2013.02.009 1:CAS:528:DC%2BC3sXjvFCgu70%3D
    • Gant SE, Kelsey A, McNally K, Witlox HWM, Bilio M (2013) Methodology for global sensitivity analysis of consequence models. J Loss Prev Process Ind 26(4):792-802. doi: 10.1016/j.jlp.2013.02.009
    • (2013) J Loss Prev Process Ind , vol.26 , Issue.4 , pp. 792-802
    • Gant, S.E.1    Kelsey, A.2    McNally, K.3    Witlox, H.W.M.4    Bilio, M.5
  • 12
    • 77954964136 scopus 로고    scopus 로고
    • Uncertainty and sensitivity analysis in code environmental model for risk assessments from industrial source complex
    • 10.1016/j.sbspro.2010.05.164
    • García-Díaz JC, Gozalvez-Zafrilla JM (2010) Uncertainty and sensitivity analysis in code environmental model for risk assessments from industrial source complex. Procedia Soc Behav Sci 2(6):7656-7657. doi: 10.1016/j.sbspro.2010.05.164
    • (2010) Procedia Soc Behav Sci , vol.2 , Issue.6 , pp. 7656-7657
    • García-Díaz, J.C.1    Gozalvez-Zafrilla, J.M.2
  • 13
    • 84866324594 scopus 로고    scopus 로고
    • Uncertainty and sensitive analysis of environmental model for risk assessments: An industrial case study
    • 10.1016/j.ress.2011.04.004
    • García-Díaz JC, Gozalvez-Zafrilla JM (2012) Uncertainty and sensitive analysis of environmental model for risk assessments: an industrial case study. Reliab Eng Syst Saf 107:16-22. doi: 10.1016/j.ress.2011.04.004
    • (2012) Reliab Eng Syst Saf , vol.107 , pp. 16-22
    • García-Díaz, J.C.1    Gozalvez-Zafrilla, J.M.2
  • 15
    • 0034739917 scopus 로고    scopus 로고
    • Uncertainties in predicted ozone concentrations due to input uncertainties for the UAM-V photochemical grid model applied to the July 1995 OTAG domain
    • 10.1016/S1352-2310(00)00367-8 1:CAS:528:DC%2BD3cXoslals7s%3D
    • Hanna SR, Lu Z, Frey C, Wheeler N, Vukovich J, Arunachalam S, Fernau M, Hansen DA (2001) Uncertainties in predicted ozone concentrations due to input uncertainties for the UAM-V photochemical grid model applied to the July 1995 OTAG domain. Atmos Environ 35:891-903. doi: 10.1016/S1352-2310(00)00367-8
    • (2001) Atmos Environ , vol.35 , pp. 891-903
    • Hanna, S.R.1    Lu, Z.2    Frey, C.3    Wheeler, N.4    Vukovich, J.5    Arunachalam, S.6    Fernau, M.7    Hansen, D.A.8
  • 17
    • 84921068080 scopus 로고    scopus 로고
    • Monte Carlo analysis and fuzzy sets for uncertainty propagation in sis performance assessment. World Academy of Science, Engineering and Technology
    • Innal F, Dutuit Y, Chebila M (2013) Monte Carlo analysis and fuzzy sets for uncertainty propagation in sis performance assessment. World Academy of Science, Engineering and Technology. International Journal of Physical Science and Engineering 7(11):306-314
    • (2013) International Journal of Physical Science and Engineering , vol.7 , Issue.11 , pp. 306-314
    • Innal, F.1    Dutuit, Y.2    Chebila, M.3
  • 18
    • 63749132988 scopus 로고    scopus 로고
    • The effect of model parameters on the simulation of fire dynamics
    • 10.3801/IAFSS.FSS.9-1341
    • Jahn W, Rein G, Torero JL (2008) The effect of model parameters on the simulation of fire dynamics. Fire Saf Sci 9:1341-1352. doi: 10.3801/IAFSS.FSS.9-1341
    • (2008) Fire Saf Sci , vol.9 , pp. 1341-1352
    • Jahn, W.1    Rein, G.2    Torero, J.L.3
  • 19
    • 0030680308 scopus 로고    scopus 로고
    • Linear and Monte Carlo uncertainty analysis for subsurface contaminant transport simulation
    • 10.1029/97WR01925 1:CAS:528:DyaK2sXnsVyisLk%3D
    • James AL, Oldenburg CM (1997) Linear and Monte Carlo uncertainty analysis for subsurface contaminant transport simulation. Water Resour Res 33(11):2495-2508. doi: 10.1029/97WR01925
    • (1997) Water Resour Res , vol.33 , Issue.11 , pp. 2495-2508
    • James, A.L.1    Oldenburg, C.M.2
  • 20
    • 0006772451 scopus 로고
    • Risk assessment: Where are we, and where are we going?
    • S. Bentley (eds) Geological Society Engineering Geology Special Publication London 10.1144/GSL.ENG.1996.011.01.44
    • Jefferies M, Hall D, Hinchliff J, Aitken M (1993) Risk assessment: where are we, and where are we going? In: Bentley SP (ed) Engineering geology of waste disposal. Geological Society Engineering Geology Special Publication, London, pp 241-359. doi: 10.1144/GSL.ENG.1996.011.01.44
    • (1993) Engineering Geology of Waste Disposal , pp. 241-359
    • Jefferies, M.1    Hall, D.2    Hinchliff, J.3    Aitken, M.4
  • 21
    • 33845532060 scopus 로고    scopus 로고
    • A statistical approach for estimating uncertainty in dispersion modeling: An example of application in southwestern USA
    • 10.1016/j.atmosenv.2006.08.048
    • Koračin D, Panorska A, Isakov V, Touma JS, Swall J (2007) A statistical approach for estimating uncertainty in dispersion modeling: an example of application in southwestern USA. Atmos Environ 41(3):617-628. doi: 10.1016/j.atmosenv.2006.08.048
    • (2007) Atmos Environ , vol.41 , Issue.3 , pp. 617-628
    • Koračin, D.1    Panorska, A.2    Isakov, V.3    Touma, J.S.4    Swall, J.5
  • 22
    • 13444268578 scopus 로고    scopus 로고
    • Lund University. Department of Fire Safety Engineering. Report 1020. Sweden
    • Lundin J (1999) Model uncertainty in fire safety engineering. Lund University. Department of Fire Safety Engineering. Report 1020. Sweden
    • (1999) Model Uncertainty in Fire Safety Engineering
    • Lundin, J.1
  • 23
    • 0030303639 scopus 로고    scopus 로고
    • Numerical simulation of smoke plumes from large oil fires
    • 10.1016/1352-2310(96)00151-3 1:CAS:528:DyaK28XmtFaru7g%3D
    • Mcgrattan KB, Baum HR, Rehm RG (1996) Numerical simulation of smoke plumes from large oil fires. Atmos Environ 30(24):4125-4136. doi: 10.1016/1352-2310(96)00151-3
    • (1996) Atmos Environ , vol.30 , Issue.24 , pp. 4125-4136
    • Mcgrattan, K.B.1    Baum, H.R.2    Rehm, R.G.3
  • 24
    • 2642680039 scopus 로고    scopus 로고
    • Uncertainty analyses of fuel hydrocarbon biodegradation signatures in ground water by probabilistic modeling
    • 10.1111/j.1745-6584.1998.tb02844.x 1:CAS:528:DyaK1cXkslGhsb8%3D
    • McNab WW, Dooher BP (1998) Uncertainty analyses of fuel hydrocarbon biodegradation signatures in ground water by probabilistic modeling. Ground Water 36(4):691-698. doi: 10.1111/j.1745-6584.1998.tb02844.x
    • (1998) Ground Water , vol.36 , Issue.4 , pp. 691-698
    • McNab, W.W.1    Dooher, B.P.2
  • 26
    • 83255187234 scopus 로고    scopus 로고
    • Sensitivity analysis of Phast's atmospheric dispersion model for three toxic materials (nitric oxide, ammonia, chlorine)
    • 10.1016/j.jlp.2011.06.015 1:CAS:528:DC%2BC3MXhs1SktbvK
    • Pandya N, Gabas N, Marsden E (2012) Sensitivity analysis of Phast's atmospheric dispersion model for three toxic materials (nitric oxide, ammonia, chlorine). J Loss Prev Process Ind 25:20-32. doi: 10.1016/j.jlp.2011.06.015
    • (2012) J Loss Prev Process Ind , vol.25 , pp. 20-32
    • Pandya, N.1    Gabas, N.2    Marsden, E.3
  • 27
    • 84878143603 scopus 로고    scopus 로고
    • Uncertainty analysis of Phast's atmospheric dispersion model for two industrial use cases
    • 10.3303/CET1331017
    • Pandya N, Gabas N, Marsden E (2013) Uncertainty analysis of Phast's atmospheric dispersion model for two industrial use cases. Chem Eng Trans 31:97-102. doi: 10.3303/CET1331017
    • (2013) Chem Eng Trans , vol.31 , pp. 97-102
    • Pandya, N.1    Gabas, N.2    Marsden, E.3
  • 29
    • 34250709596 scopus 로고    scopus 로고
    • Uncertainty in the environmental modelling process - A framework and guidance
    • 10.1016/j.envsoft.2007.02.004
    • Refsgaard JC, van der Sluijs JP, Højberg AL, Vanrolleghem PA (2007) Uncertainty in the environmental modelling process - a framework and guidance. Environ Model Softw 22(11):1543-1556. doi: 10.1016/j.envsoft.2007.02.004
    • (2007) Environ Model Softw , vol.22 , Issue.11 , pp. 1543-1556
    • Refsgaard, J.C.1    Van Der Sluijs, J.P.2    Højberg, A.L.3    Vanrolleghem, P.A.4
  • 30
    • 67349115252 scopus 로고    scopus 로고
    • The critique of modelling and sensitivity analysis in the scientific discourse
    • Transatlantic Uncertainty Colloquium (TAUC), Washington, October 10-11, 2006
    • Saltelli A (2006) The critique of modelling and sensitivity analysis in the scientific discourse. An overview of good practices. Transatlantic Uncertainty Colloquium (TAUC), Washington, October 10-11, 2006
    • (2006) An Overview of Good Practices , pp. p
    • Saltelli, A.1
  • 32
    • 0038016971 scopus 로고    scopus 로고
    • A case study for assessing uncertainty in local scale regulatory air quality modeling applications
    • 10.1016/S1352-2310(03)00411-4 1:CAS:528:DC%2BD3sXltFClsrs%3D
    • Sax T, Isakov V (2003) A case study for assessing uncertainty in local scale regulatory air quality modeling applications. Atmos Environ 37:3481-3489. doi: 10.1016/S1352-2310(03)00411-4
    • (2003) Atmos Environ , vol.37 , pp. 3481-3489
    • Sax, T.1    Isakov, V.2
  • 33
    • 23144447142 scopus 로고    scopus 로고
    • Uncertainty analysis in atmospheric dispersion modeling
    • 10.1007/s00024-005-2697-4
    • Shankar RK (2005) Uncertainty analysis in atmospheric dispersion modeling. Pure Appl Geophys 162(10):1893-1917. doi: 10.1007/s00024-005-2697-4
    • (2005) Pure Appl Geophys , vol.162 , Issue.10 , pp. 1893-1917
    • Shankar, R.K.1
  • 34
    • 84876741856 scopus 로고    scopus 로고
    • Uncertainty techniques in liquefied natural gas (LNG) dispersion calculations
    • 10.1016/j.jlp.2012.07.020
    • Siuta D, Markowski AS, Mannan MS (2013) Uncertainty techniques in liquefied natural gas (LNG) dispersion calculations. J Loss Prev Process Ind 26(3):418-426. doi: 10.1016/j.jlp.2012.07.020
    • (2013) J Loss Prev Process Ind , vol.26 , Issue.3 , pp. 418-426
    • Siuta, D.1    Markowski, A.S.2    Mannan, M.S.3
  • 35
    • 0032415728 scopus 로고    scopus 로고
    • Limitations in recovering the history of a groundwater contaminant plume
    • 10.1016/S0169-7722(98)00078-3 1:CAS:528:DyaK1cXlt1Wqtbw%3D
    • Skaggs H, Kabala ZJ (1998) Limitations in recovering the history of a groundwater contaminant plume. J Contam Hydrol 33(3):347-359. doi: 10.1016/S0169-7722(98)00078-3
    • (1998) J Contam Hydrol , vol.33 , Issue.3 , pp. 347-359
    • Skaggs, H.1    Kabala, Z.J.2
  • 36
    • 0034215011 scopus 로고    scopus 로고
    • Regional estimation of pollutant gas dry deposition in the UK: Model description, sensitivity analyses and outputs
    • 10.1016/S1352-2310(99)00517-8
    • Smith RI, Fowler D, Sutton MA, Flechard C, Coyle M (1999) Regional estimation of pollutant gas dry deposition in the UK: model description, sensitivity analyses and outputs. Atmos Environ 34(22):3757-3777. doi: 10.1016/S1352-2310(99)00517-8
    • (1999) Atmos Environ , vol.34 , Issue.22 , pp. 3757-3777
    • Smith, R.I.1    Fowler, D.2    Sutton, M.A.3    Flechard, C.4    Coyle, M.5
  • 37
    • 79956011041 scopus 로고    scopus 로고
    • Uncertainty and risk in wildland fire management: A review
    • 10.1016/j.jenvman.2011.03.015
    • Thompson MP, Calkin DE (2011) Uncertainty and risk in wildland fire management: a review. J Environ Manage 92(8):1895-1909. doi: 10.1016/j.jenvman.2011.03.015
    • (2011) J Environ Manage , vol.92 , Issue.8 , pp. 1895-1909
    • Thompson, M.P.1    Calkin, D.E.2
  • 39
    • 79955448953 scopus 로고    scopus 로고
    • Modelling of discharge and atmospheric dispersion for carbon dioxide releases including sensitivity analysis for wide range of scenarios
    • 10.1016/j.egypro.2011.02.114 1:CAS:528:DC%2BC3MXlsl2ht78%3D
    • Witlox HWM, Stene J, Harper M, Nilsen SH (2011) Modelling of discharge and atmospheric dispersion for carbon dioxide releases including sensitivity analysis for wide range of scenarios. Energy Procedia 4:2253-2260. doi: 10.1016/j.egypro.2011.02.114
    • (2011) Energy Procedia , vol.4 , pp. 2253-2260
    • Witlox, H.W.M.1    Stene, J.2    Harper, M.3    Nilsen, S.H.4
  • 40
    • 84871407515 scopus 로고    scopus 로고
    • The influence of parameter distribution uncertainty on hydrological and sediment modeling: A case study of SWAT model applied to the Daning watershed of the Three Gorges Reservoir Region, China
    • 10.1007/s00477-012-0579-8
    • Zhenyao S, Lei C, Tao C (2013) The influence of parameter distribution uncertainty on hydrological and sediment modeling: a case study of SWAT model applied to the Daning watershed of the Three Gorges Reservoir Region, China. Stoch Env Res Risk Assess 27(1):235-251. doi: 10.1007/s00477-012-0579-8
    • (2013) Stoch Env Res Risk Assess , vol.27 , Issue.1 , pp. 235-251
    • Zhenyao, S.1    Lei, C.2    Tao, C.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.