-
1
-
-
0001641514
-
Mutations of bacteria from virus sensitivity to virus resistance
-
Luria S E and Delbrück M 1943 Mutations of bacteria from virus sensitivity to virus resistance Genetics 28 491-511
-
(1943)
Genetics
, vol.28
, pp. 491-511
-
-
Luria, S.E.1
Delbrück, M.2
-
2
-
-
84880347707
-
Large population solution of the stochastic Luria-Delbrück evolution model
-
Kessler D A and Levine H 2013 Large population solution of the stochastic Luria-Delbrück evolution model Proc. Natl Acad. Sci. USA 110 11682-7
-
(2013)
Proc. Natl Acad. Sci. USA
, vol.110
, pp. 11682-11687
-
-
Kessler, D.A.1
Levine, H.2
-
3
-
-
0001313535
-
The distribution of the numbers of mutants in bacterial populations
-
Lea D and Coulson C 1949 The distribution of the numbers of mutants in bacterial populations J. Genet. 49 264-85
-
(1949)
J. Genet.
, vol.49
, pp. 264-285
-
-
Lea, D.1
Coulson, C.2
-
5
-
-
0032760481
-
Progress of a half century in the study of the Luria-Delbrück distribution
-
Zheng Q 1999 Progress of a half century in the study of the Luria-Delbrück distribution Math. Biosci. 162 1-32
-
(1999)
Math. Biosci.
, vol.162
, pp. 1-32
-
-
Zheng, Q.1
-
6
-
-
0002821455
-
Birth-and-death processes, and the theory of carcinogenesis
-
Kendall D G 1960 Birth-and-death processes, and the theory of carcinogenesis Biometrika 47 13-21
-
(1960)
Biometrika
, vol.47
, pp. 13-21
-
-
Kendall, D.G.1
-
7
-
-
80053480439
-
Exact solution of a two-type branching process: Models of tumor progression
-
Antal T and Krapivsky P L 2011 Exact solution of a two-type branching process: models of tumor progression J. Stat. Mech. P08018
-
(2011)
J. Stat. Mech.
, pp. P08018
-
-
Antal, T.1
Krapivsky, P.L.2
-
8
-
-
33947104197
-
A single type of progenitor cell maintains normal epidermis
-
Clayton E, Doupe D P, Klein A M, Winton D J, Simons B D and Jones P H 2007 A single type of progenitor cell maintains normal epidermis Nature 446 185-9
-
(2007)
Nature
, vol.446
, pp. 185-189
-
-
Clayton, E.1
Doupe, D.P.2
Klein, A.M.3
Winton, D.J.4
Simons, B.D.5
Jones, P.H.6
-
9
-
-
77957070284
-
Exact solution of a two-type branching process: Clone size distribution in cell division kinetics
-
Antal T and Krapivsky P L 2010 Exact solution of a two-type branching process: clone size distribution in cell division kinetics J. Stat. Mech. P07028
-
(2010)
J. Stat. Mech.
, pp. P07028
-
-
Antal, T.1
Krapivsky, P.L.2
-
10
-
-
84881483492
-
Evolutionary dynamics of cancer in response to targeted combination therapy
-
Bozic I et al 2013 Evolutionary dynamics of cancer in response to targeted combination therapy eLife 2 e00747
-
(2013)
eLife
, vol.2
, pp. e00747
-
-
Bozic, I.1
-
11
-
-
84875490185
-
Cancer genome landscapes
-
Vogelstein B, Papadopoulos N, Velculescu V E, Zhou S, Diaz L A and Kinzler K W 2013 Cancer genome landscapes Science 339 1546-58
-
(2013)
Science
, vol.339
, pp. 1546-1558
-
-
Vogelstein, B.1
Papadopoulos, N.2
Velculescu, V.E.3
Zhou, S.4
Diaz, L.A.5
Kinzler, K.W.6
-
13
-
-
0035257336
-
An explicit representation of the Luria-Delbrück distribution
-
Angerer W P 2001 An explicit representation of the Luria-Delbrück distribution J. Math. Biol. 42 145-74
-
(2001)
J. Math. Biol.
, vol.42
, pp. 145-174
-
-
Angerer, W.P.1
-
14
-
-
33646183071
-
Evolution of resistance during clonal expansion
-
Iwasa Y, Nowak M A and Michor F 2006 Evolution of resistance during clonal expansion Genetics 172 2557-66
-
(2006)
Genetics
, vol.172
, pp. 2557-2566
-
-
Iwasa, Y.1
Nowak, M.A.2
Michor, F.3
-
15
-
-
35248839615
-
The fixed-size Luria-Delbrück model with nonzero death rate
-
Komarova N L, Wu L and Baldi P 2007 The fixed-size Luria-Delbrück model with nonzero death rate Math. Biosci. 210 253-90
-
(2007)
Math. Biosci.
, vol.210
, pp. 253-290
-
-
Komarova, N.L.1
Wu, L.2
Baldi, P.3
-
16
-
-
84925517779
-
Scaling solution in the large population limit of the general asymmetric stochastic Luria-Delbrück evolution process
-
Kessler D A and Levine H 2014 Scaling solution in the large population limit of the general asymmetric stochastic Luria-Delbrück evolution process J. Stat. Phys. doi:10.1007/s10955-014-1143-3
-
(2014)
J. Stat. Phys.
-
-
Kessler, D.A.1
Levine, H.2
-
17
-
-
72549097003
-
Evolution of resistance and progression to disease during clonal expansion of cancer
-
Durrett R and Moseley S 2010 Evolution of resistance and progression to disease during clonal expansion of cancer Theor. Popul. Biol. 77 42-8
-
(2010)
Theor. Popul. Biol.
, vol.77
, pp. 42-48
-
-
Durrett, R.1
Moseley, S.2
-
18
-
-
0001695328
-
A population birth-and-mutation process, I: Explicit distributions for the number of mutants in an old culture of bacteria
-
Mandelbrot B 1974 A population birth-and-mutation process, I: explicit distributions for the number of mutants in an old culture of bacteria J. Appl. Probab. 11 437-44
-
(1974)
J. Appl. Probab.
, vol.11
, pp. 437-444
-
-
Mandelbrot, B.1
-
19
-
-
27944440971
-
Convergence results for compound poisson distributions and applications to the standard Luria-Delbrück distribution
-
Möhle M 2005 Convergence results for compound poisson distributions and applications to the standard Luria-Delbrück distribution J. Appl. Probab. 42 620-31
-
(2005)
J. Appl. Probab.
, vol.42
, pp. 620-631
-
-
Möhle, M.1
-
20
-
-
36049016729
-
Limit theorems for triangular urn schemes
-
Janson S 2006 Limit theorems for triangular urn schemes Probab. Theory Relat. Fields 134 417-52
-
(2006)
Probab. Theory Relat. Fields
, vol.134
, pp. 417-452
-
-
Janson, S.1
-
23
-
-
21344484579
-
Remarks on the Luria-Delbrück distribution
-
Pakes A G 1993 Remarks on the Luria-Delbrück distribution J. Appl. Probab. 30 991-4
-
(1993)
J. Appl. Probab.
, vol.30
, pp. 991-994
-
-
Pakes, A.G.1
-
24
-
-
21344431588
-
Asymptotics of the Luria-Delbrück distribution via singularity analysis
-
Prodinger H 1996 Asymptotics of the Luria-Delbrück distribution via singularity analysis J. Appl. Probab. 33 282-3
-
(1996)
J. Appl. Probab.
, vol.33
, pp. 282-283
-
-
Prodinger, H.1
-
26
-
-
0001633538
-
Analysis of the Luria-Delbrück distribution using discrete convolution powers
-
MaWT, Sandri G V and Sarkar S 1992 Analysis of the Luria-Delbrück distribution using discrete convolution powers J. Appl. Probab. 29 255-67
-
(1992)
J. Appl. Probab.
, vol.29
, pp. 255-267
-
-
Ma, W.T.1
Sandri, G.V.2
Sarkar, S.3
-
27
-
-
21844499924
-
Comments on the Luria-Delbrück distribution
-
Kemp A W 1994 Comments on the Luria-Delbrück distribution J. Appl. Probab. 31 822-8
-
(1994)
J. Appl. Probab.
, vol.31
, pp. 822-828
-
-
Kemp, A.W.1
-
30
-
-
77953940632
-
-
Release 1.0.7 of 2014-03-21. Online companion to [31]
-
NIST Digital Library of Mathematical Functions http://dlmf.nist.gov/, Release 1.0.7 of 2014-03-21. Online companion to [31]
-
NIST Digital Library of Mathematical Functions
-
-
|