메뉴 건너뛰기




Volumn 2015, Issue 1, 2015, Pages

Mutant number distribution in an exponentially growing population

Author keywords

mutational and evolutionary processes (theory); population dynamics (theory); stochastic processes (theory)

Indexed keywords


EID: 84920983023     PISSN: None     EISSN: 17425468     Source Type: Journal    
DOI: 10.1088/1742-5468/2015/01/P01011     Document Type: Article
Times cited : (27)

References (31)
  • 1
    • 0001641514 scopus 로고
    • Mutations of bacteria from virus sensitivity to virus resistance
    • Luria S E and Delbrück M 1943 Mutations of bacteria from virus sensitivity to virus resistance Genetics 28 491-511
    • (1943) Genetics , vol.28 , pp. 491-511
    • Luria, S.E.1    Delbrück, M.2
  • 2
    • 84880347707 scopus 로고    scopus 로고
    • Large population solution of the stochastic Luria-Delbrück evolution model
    • Kessler D A and Levine H 2013 Large population solution of the stochastic Luria-Delbrück evolution model Proc. Natl Acad. Sci. USA 110 11682-7
    • (2013) Proc. Natl Acad. Sci. USA , vol.110 , pp. 11682-11687
    • Kessler, D.A.1    Levine, H.2
  • 3
    • 0001313535 scopus 로고
    • The distribution of the numbers of mutants in bacterial populations
    • Lea D and Coulson C 1949 The distribution of the numbers of mutants in bacterial populations J. Genet. 49 264-85
    • (1949) J. Genet. , vol.49 , pp. 264-285
    • Lea, D.1    Coulson, C.2
  • 5
    • 0032760481 scopus 로고    scopus 로고
    • Progress of a half century in the study of the Luria-Delbrück distribution
    • Zheng Q 1999 Progress of a half century in the study of the Luria-Delbrück distribution Math. Biosci. 162 1-32
    • (1999) Math. Biosci. , vol.162 , pp. 1-32
    • Zheng, Q.1
  • 6
    • 0002821455 scopus 로고
    • Birth-and-death processes, and the theory of carcinogenesis
    • Kendall D G 1960 Birth-and-death processes, and the theory of carcinogenesis Biometrika 47 13-21
    • (1960) Biometrika , vol.47 , pp. 13-21
    • Kendall, D.G.1
  • 7
    • 80053480439 scopus 로고    scopus 로고
    • Exact solution of a two-type branching process: Models of tumor progression
    • Antal T and Krapivsky P L 2011 Exact solution of a two-type branching process: models of tumor progression J. Stat. Mech. P08018
    • (2011) J. Stat. Mech. , pp. P08018
    • Antal, T.1    Krapivsky, P.L.2
  • 9
    • 77957070284 scopus 로고    scopus 로고
    • Exact solution of a two-type branching process: Clone size distribution in cell division kinetics
    • Antal T and Krapivsky P L 2010 Exact solution of a two-type branching process: clone size distribution in cell division kinetics J. Stat. Mech. P07028
    • (2010) J. Stat. Mech. , pp. P07028
    • Antal, T.1    Krapivsky, P.L.2
  • 10
    • 84881483492 scopus 로고    scopus 로고
    • Evolutionary dynamics of cancer in response to targeted combination therapy
    • Bozic I et al 2013 Evolutionary dynamics of cancer in response to targeted combination therapy eLife 2 e00747
    • (2013) eLife , vol.2 , pp. e00747
    • Bozic, I.1
  • 13
    • 0035257336 scopus 로고    scopus 로고
    • An explicit representation of the Luria-Delbrück distribution
    • Angerer W P 2001 An explicit representation of the Luria-Delbrück distribution J. Math. Biol. 42 145-74
    • (2001) J. Math. Biol. , vol.42 , pp. 145-174
    • Angerer, W.P.1
  • 14
    • 33646183071 scopus 로고    scopus 로고
    • Evolution of resistance during clonal expansion
    • Iwasa Y, Nowak M A and Michor F 2006 Evolution of resistance during clonal expansion Genetics 172 2557-66
    • (2006) Genetics , vol.172 , pp. 2557-2566
    • Iwasa, Y.1    Nowak, M.A.2    Michor, F.3
  • 15
    • 35248839615 scopus 로고    scopus 로고
    • The fixed-size Luria-Delbrück model with nonzero death rate
    • Komarova N L, Wu L and Baldi P 2007 The fixed-size Luria-Delbrück model with nonzero death rate Math. Biosci. 210 253-90
    • (2007) Math. Biosci. , vol.210 , pp. 253-290
    • Komarova, N.L.1    Wu, L.2    Baldi, P.3
  • 16
    • 84925517779 scopus 로고    scopus 로고
    • Scaling solution in the large population limit of the general asymmetric stochastic Luria-Delbrück evolution process
    • Kessler D A and Levine H 2014 Scaling solution in the large population limit of the general asymmetric stochastic Luria-Delbrück evolution process J. Stat. Phys. doi:10.1007/s10955-014-1143-3
    • (2014) J. Stat. Phys.
    • Kessler, D.A.1    Levine, H.2
  • 17
    • 72549097003 scopus 로고    scopus 로고
    • Evolution of resistance and progression to disease during clonal expansion of cancer
    • Durrett R and Moseley S 2010 Evolution of resistance and progression to disease during clonal expansion of cancer Theor. Popul. Biol. 77 42-8
    • (2010) Theor. Popul. Biol. , vol.77 , pp. 42-48
    • Durrett, R.1    Moseley, S.2
  • 18
    • 0001695328 scopus 로고
    • A population birth-and-mutation process, I: Explicit distributions for the number of mutants in an old culture of bacteria
    • Mandelbrot B 1974 A population birth-and-mutation process, I: explicit distributions for the number of mutants in an old culture of bacteria J. Appl. Probab. 11 437-44
    • (1974) J. Appl. Probab. , vol.11 , pp. 437-444
    • Mandelbrot, B.1
  • 19
    • 27944440971 scopus 로고    scopus 로고
    • Convergence results for compound poisson distributions and applications to the standard Luria-Delbrück distribution
    • Möhle M 2005 Convergence results for compound poisson distributions and applications to the standard Luria-Delbrück distribution J. Appl. Probab. 42 620-31
    • (2005) J. Appl. Probab. , vol.42 , pp. 620-631
    • Möhle, M.1
  • 20
    • 36049016729 scopus 로고    scopus 로고
    • Limit theorems for triangular urn schemes
    • Janson S 2006 Limit theorems for triangular urn schemes Probab. Theory Relat. Fields 134 417-52
    • (2006) Probab. Theory Relat. Fields , vol.134 , pp. 417-452
    • Janson, S.1
  • 23
    • 21344484579 scopus 로고
    • Remarks on the Luria-Delbrück distribution
    • Pakes A G 1993 Remarks on the Luria-Delbrück distribution J. Appl. Probab. 30 991-4
    • (1993) J. Appl. Probab. , vol.30 , pp. 991-994
    • Pakes, A.G.1
  • 24
    • 21344431588 scopus 로고    scopus 로고
    • Asymptotics of the Luria-Delbrück distribution via singularity analysis
    • Prodinger H 1996 Asymptotics of the Luria-Delbrück distribution via singularity analysis J. Appl. Probab. 33 282-3
    • (1996) J. Appl. Probab. , vol.33 , pp. 282-283
    • Prodinger, H.1
  • 26
    • 0001633538 scopus 로고
    • Analysis of the Luria-Delbrück distribution using discrete convolution powers
    • MaWT, Sandri G V and Sarkar S 1992 Analysis of the Luria-Delbrück distribution using discrete convolution powers J. Appl. Probab. 29 255-67
    • (1992) J. Appl. Probab. , vol.29 , pp. 255-267
    • Ma, W.T.1    Sandri, G.V.2    Sarkar, S.3
  • 27
    • 21844499924 scopus 로고
    • Comments on the Luria-Delbrück distribution
    • Kemp A W 1994 Comments on the Luria-Delbrück distribution J. Appl. Probab. 31 822-8
    • (1994) J. Appl. Probab. , vol.31 , pp. 822-828
    • Kemp, A.W.1
  • 30
    • 77953940632 scopus 로고    scopus 로고
    • Release 1.0.7 of 2014-03-21. Online companion to [31]
    • NIST Digital Library of Mathematical Functions http://dlmf.nist.gov/, Release 1.0.7 of 2014-03-21. Online companion to [31]
    • NIST Digital Library of Mathematical Functions


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.