메뉴 건너뛰기




Volumn 111, Issue , 2015, Pages 92-102

A key frame extraction method for processing greenhouse vegetables production monitoring video

Author keywords

Greenhouse vegetables; Key frames; Mean pixels value; Monitoring video; On line clustering; Visual saliency

Indexed keywords

DATA HANDLING; GREENHOUSES; IMAGE SEGMENTATION; PIXELS; SOCIAL NETWORKING (ONLINE); VEGETABLES; VISUALIZATION;

EID: 84920971089     PISSN: 01681699     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.compag.2014.12.007     Document Type: Article
Times cited : (61)

References (26)
  • 3
    • 78650257476 scopus 로고    scopus 로고
    • Image-to-MIDI mapping based on dynamic fuzzy color segmentation for visually impaired people
    • Chen C.L., Liao Y.F., Tai C.L. Image-to-MIDI mapping based on dynamic fuzzy color segmentation for visually impaired people. Pattern Recogn. Lett. 2011, 32(4):549-560.
    • (2011) Pattern Recogn. Lett. , vol.32 , Issue.4 , pp. 549-560
    • Chen, C.L.1    Liao, Y.F.2    Tai, C.L.3
  • 4
    • 78049239873 scopus 로고    scopus 로고
    • VSUMM: a mechanism designed to produce static video summaries and a novel evaluation method
    • De Avila S.E.F., Lopes A.P.B. VSUMM: a mechanism designed to produce static video summaries and a novel evaluation method. Pattern Recogn. Lett. 2011, 32(1):56-68.
    • (2011) Pattern Recogn. Lett. , vol.32 , Issue.1 , pp. 56-68
    • De Avila, S.E.F.1    Lopes, A.P.B.2
  • 5
    • 78449282295 scopus 로고    scopus 로고
    • Exploiting intensity inhomogeneity to extract textured objects from natural scenes
    • Springer, Berlin, Heidelberg
    • Ding J., Shen J., Pang H., et al. Exploiting intensity inhomogeneity to extract textured objects from natural scenes. Computer Vision-ACCV2009 2010, 1-10. Springer, Berlin, Heidelberg.
    • (2010) Computer Vision-ACCV2009 , pp. 1-10
    • Ding, J.1    Shen, J.2    Pang, H.3
  • 6
    • 84864132699 scopus 로고    scopus 로고
    • Adaptive key frame extraction for video summarization using an aggregation mechanism
    • Ejaz N., Tariq T.B., Baik S.W. Adaptive key frame extraction for video summarization using an aggregation mechanism. J. Vis. Commun. Image Represent. 2012, 23(7):1031-1040.
    • (2012) J. Vis. Commun. Image Represent. , vol.23 , Issue.7 , pp. 1031-1040
    • Ejaz, N.1    Tariq, T.B.2    Baik, S.W.3
  • 7
    • 84871712632 scopus 로고    scopus 로고
    • Efficient visual attention based framework for extracting key frames from videos
    • Ejaz N., Mehmood I., Wook Baik S. Efficient visual attention based framework for extracting key frames from videos. Signal Process.: Image Commun. 2013, 28(1):34-44.
    • (2013) Signal Process.: Image Commun. , vol.28 , Issue.1 , pp. 34-44
    • Ejaz, N.1    Mehmood, I.2    Wook Baik, S.3
  • 8
    • 84878861771 scopus 로고    scopus 로고
    • Method of video segmentation for vegetable disease based on self-adaptive dual thresholds
    • Fu Z.T., Su Y., Zhang L.X., et al. Method of video segmentation for vegetable disease based on self-adaptive dual thresholds. Trans. CSAE 2013, 29(9):148-155.
    • (2013) Trans. CSAE , vol.29 , Issue.9 , pp. 148-155
    • Fu, Z.T.1    Su, Y.2    Zhang, L.X.3
  • 9
    • 76849117876 scopus 로고    scopus 로고
    • STIMO: STIll and moving video storyboard for the web scenario
    • Furini M., Geraci F., Montangero M., et al. STIMO: STIll and moving video storyboard for the web scenario. Multimed. Tools Appl. 2010, 46(1):47-69.
    • (2010) Multimed. Tools Appl. , vol.46 , Issue.1 , pp. 47-69
    • Furini, M.1    Geraci, F.2    Montangero, M.3
  • 11
    • 84865059464 scopus 로고    scopus 로고
    • Fish species classification by color, texture and multi-class support vector machine using computer vision
    • Hu J., Li D.L., Duan Q.L., et al. Fish species classification by color, texture and multi-class support vector machine using computer vision. Comput. Electron. Agr. 2012, 88:133-140.
    • (2012) Comput. Electron. Agr. , vol.88 , pp. 133-140
    • Hu, J.1    Li, D.L.2    Duan, Q.L.3
  • 12
    • 0032204063 scopus 로고    scopus 로고
    • A model of saliency-based visual attention for rapid scene analysis
    • Itti L., Koch C., Niebur E. A model of saliency-based visual attention for rapid scene analysis. IEEE Trans. Pattern Anal. Mach. Intell. 1998, 20(11):1254-1259.
    • (1998) IEEE Trans. Pattern Anal. Mach. Intell. , vol.20 , Issue.11 , pp. 1254-1259
    • Itti, L.1    Koch, C.2    Niebur, E.3
  • 15
    • 0036996446 scopus 로고    scopus 로고
    • Object-based video abstraction for video surveillance systems
    • Kim C., Hwang J.N. Object-based video abstraction for video surveillance systems. IEEE Trans Circ. Syst. Video Technol. 2002, 12(12):1128-1138.
    • (2002) IEEE Trans Circ. Syst. Video Technol. , vol.12 , Issue.12 , pp. 1128-1138
    • Kim, C.1    Hwang, J.N.2
  • 16
    • 84883494190 scopus 로고    scopus 로고
    • Video key frame extraction through dynamic Delaunay clustering with a structural constraint
    • Kuanar S.K., Panda R., Chowdhury A.S. Video key frame extraction through dynamic Delaunay clustering with a structural constraint. J. Vis. Commun. Image Represent. 2013, 24(7):1212-1227.
    • (2013) J. Vis. Commun. Image Represent. , vol.24 , Issue.7 , pp. 1212-1227
    • Kuanar, S.K.1    Panda, R.2    Chowdhury, A.S.3
  • 17
    • 84876014018 scopus 로고    scopus 로고
    • Image segmentation based on visual saliency and graph cut
    • Liu Y., Huang B., Sun H.J., et al. Image segmentation based on visual saliency and graph cut. J. Comput.-Aid Des. Comput. Graph. 2013, 25(3):402-409.
    • (2013) J. Comput.-Aid Des. Comput. Graph. , vol.25 , Issue.3 , pp. 402-409
    • Liu, Y.1    Huang, B.2    Sun, H.J.3
  • 18
    • 84879223216 scopus 로고    scopus 로고
    • Sports video summarization based on motion analysis
    • Mendi E., Clemente H.B., Bayrak C. Sports video summarization based on motion analysis. Comput. Electr. Eng. 2013, 39(3):790-796.
    • (2013) Comput. Electr. Eng. , vol.39 , Issue.3 , pp. 790-796
    • Mendi, E.1    Clemente, H.B.2    Bayrak, C.3
  • 19
    • 84859647079 scopus 로고    scopus 로고
    • Identificator: a web-based tool for visual plant disease identification, a proof of concept with a case study on strawberry
    • Pertot I., Kuflik T., Gordon I., et al. Identificator: a web-based tool for visual plant disease identification, a proof of concept with a case study on strawberry. Comput. Electron. Agr. 2012, 84:144-154.
    • (2012) Comput. Electron. Agr. , vol.84 , pp. 144-154
    • Pertot, I.1    Kuflik, T.2    Gordon, I.3
  • 20
    • 77950515899 scopus 로고    scopus 로고
    • A review of advanced techniques for detecting plant diseases
    • Sankaran S., Mishra A., Ehsani R., et al. A review of advanced techniques for detecting plant diseases. Comput. Electron. Agr. 2010, 72(1):1-13.
    • (2010) Comput. Electron. Agr. , vol.72 , Issue.1 , pp. 1-13
    • Sankaran, S.1    Mishra, A.2    Ehsani, R.3
  • 21
    • 84901824749 scopus 로고    scopus 로고
    • A novel video abstraction method based on fast clustering of the regions of interest in key frames
    • Song G.H., Ji Q.G., Lu Z.M., et al. A novel video abstraction method based on fast clustering of the regions of interest in key frames. AEU-Int. J. Electron. Commun. 2014, 10.1016/j.aeue.2014.03.004.
    • (2014) AEU-Int. J. Electron. Commun.
    • Song, G.H.1    Ji, Q.G.2    Lu, Z.M.3
  • 22
    • 84964820767 scopus 로고    scopus 로고
    • On-the-fly extraction of key frames for efficient video summarization
    • Walid B., Ezzeddine Z. On-the-fly extraction of key frames for efficient video summarization. AASRI Proc. 2013, 4:78-84.
    • (2013) AASRI Proc. , vol.4 , pp. 78-84
    • Walid, B.1    Ezzeddine, Z.2
  • 23
    • 85015532067 scopus 로고    scopus 로고
    • Key frames extraction based on probabilistic hyper graph clustering
    • Wang H.Y., Dai D.F. Key frames extraction based on probabilistic hyper graph clustering. Comput. Appl. Software 2013, 30(4):243-245.
    • (2013) Comput. Appl. Software , vol.30 , Issue.4 , pp. 243-245
    • Wang, H.Y.1    Dai, D.F.2
  • 24
    • 84867964641 scopus 로고    scopus 로고
    • Key-frame retrieval method based on optical flow and entropy statistic for blooming video
    • Wang L., Gao L., Yan L., et al. Key-frame retrieval method based on optical flow and entropy statistic for blooming video. Trans. CSAE 2012, 28(17):125-130.
    • (2012) Trans. CSAE , vol.28 , Issue.17 , pp. 125-130
    • Wang, L.1    Gao, L.2    Yan, L.3
  • 26
    • 84876016859 scopus 로고    scopus 로고
    • Image segmentation based on visual saliency
    • Zhang Q.R., Jing L., Xiao H.M., et al. Image segmentation based on visual saliency. J. Image Graph. 2011, 16(5):767-772.
    • (2011) J. Image Graph. , vol.16 , Issue.5 , pp. 767-772
    • Zhang, Q.R.1    Jing, L.2    Xiao, H.M.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.