메뉴 건너뛰기




Volumn 178, Issue 2, 2015, Pages 445-464

Combining data from multiple spatially referenced prevalence surveys using generalized linear geostatistical models

Author keywords

Convenience sampling; Generalized linear geostatistical models; Malaria mapping; Monte Carlo maximum likelihood; Multiple surveys; Spatiotemporal models

Indexed keywords


EID: 84920912020     PISSN: 09641998     EISSN: 1467985X     Source Type: Journal    
DOI: 10.1111/rssa.12069     Document Type: Article
Times cited : (29)

References (23)
  • 1
    • 4344657015 scopus 로고    scopus 로고
    • Monte Carlo maximum likelihood in model-based geostatistics
    • Christensen, O. F. (2004) Monte Carlo maximum likelihood in model-based geostatistics. J. Computnl Graph. Statist., 13, 702-718.
    • (2004) J. Computnl Graph. Statist. , vol.13 , pp. 702-718
    • Christensen, O.F.1
  • 2
    • 33645558077 scopus 로고    scopus 로고
    • Robust Markov chain Monte Carlo methods for spatial generalized linear mixed models
    • Christensen, O. F., Roberts, G. O. and Sköld, M. (2006) Robust Markov chain Monte Carlo methods for spatial generalized linear mixed models. J. Computnl Graph. Statist., 15, 1-17.
    • (2006) J. Computnl Graph. Statist. , vol.15 , pp. 1-17
    • Christensen, O.F.1    Roberts, G.O.2    Sköld, M.3
  • 3
    • 0035989805 scopus 로고    scopus 로고
    • Bayesian prediction of spatial count data using generalized linear mixed models
    • Christensen, O. F. and Waagepetersen, R. P. (2002) Bayesian prediction of spatial count data using generalized linear mixed models. Biometrics, 58, 280-286.
    • (2002) Biometrics , vol.58 , pp. 280-286
    • Christensen, O.F.1    Waagepetersen, R.P.2
  • 4
    • 42349084895 scopus 로고    scopus 로고
    • Bivariate modelling and prediction of spatial variation in Loa loa prevalence in tropical Africa (with discussion)
    • Crainiceanu, C., Diggle, P. and Rowlingson, B. (2008) Bivariate modelling and prediction of spatial variation in Loa loa prevalence in tropical Africa (with discussion). J. Am. Statist. Ass., 103, 21-43.
    • (2008) J. Am. Statist. Ass. , vol.103 , pp. 21-43
    • Crainiceanu, C.1    Diggle, P.2    Rowlingson, B.3
  • 5
    • 77949520299 scopus 로고    scopus 로고
    • Geostatistical inference under preferential sampling (with discussion)
    • Diggle, P. J., Menezes, R. and Su, T. (2010) Geostatistical inference under preferential sampling (with discussion). Appl. Statist., 59, 191-232.
    • (2010) Appl. Statist. , vol.59 , pp. 191-232
    • Diggle, P.J.1    Menezes, R.2    Su, T.3
  • 6
    • 18444397758 scopus 로고    scopus 로고
    • Obtaining cancer risk factor prevalence estimates in small areas: combining data from two surveys
    • Elliot, M. R. and Davis, W. W. (2005) Obtaining cancer risk factor prevalence estimates in small areas: combining data from two surveys. Appl. Statist., 54, 595-609.
    • (2005) Appl. Statist. , vol.54 , pp. 595-609
    • Elliot, M.R.1    Davis, W.W.2
  • 8
    • 0000106855 scopus 로고
    • On the convergence of Monte Carlo maximum likelihood calculations
    • Geyer, C. J. (1994) On the convergence of Monte Carlo maximum likelihood calculations. J. R. Statist. Soc. B, 56, 261-274.
    • (1994) J. R. Statist. Soc. B , vol.56 , pp. 261-274
    • Geyer, C.J.1
  • 9
    • 0000247137 scopus 로고    scopus 로고
    • Estimation and optimization of functions
    • In (eds W. R. Gilks, S. Richardson and D. J. Spiegelhalter) -. London: Chapman and Hall
    • Geyer, C. J. (1996) Estimation and optimization of functions. In Markov Chain Monte Carlo in Practice (eds W. R. Gilks, S. Richardson and D. J. Spiegelhalter ), pp. 241-258. London: Chapman and Hall.
    • (1996) Markov Chain Monte Carlo in Practice , pp. 241-258
    • Geyer, C.J.1
  • 10
    • 0002218961 scopus 로고    scopus 로고
    • Likelihood inference for spatial point processes
    • In (eds O. E. Barndorff-Nielsen, W. S. Kendall and M. N. M. van Lieshout) -. Boca Raton: Chapman and Hall-CRC
    • Geyer, C. J. (1999) Likelihood inference for spatial point processes. In Stochastic Geometry, Likelihood and Computation (eds O. E. Barndorff-Nielsen, W. S. Kendall and M. N. M. van Lieshout ), pp. 79-140. Boca Raton: Chapman and Hall-CRC.
    • (1999) Stochastic Geometry, Likelihood and Computation , pp. 79-140
    • Geyer, C.J.1
  • 11
    • 0000051109 scopus 로고
    • Constrained Monte Carlo maximum likelihood for dependent data (with discussion)
    • Geyer, C. J. and Thompson, E. A. (1992) Constrained Monte Carlo maximum likelihood for dependent data (with discussion). J. R. Statist. Soc. B, 54, 657-699.
    • (1992) J. R. Statist. Soc. B , vol.54 , pp. 657-699
    • Geyer, C.J.1    Thompson, E.A.2
  • 12
    • 79851499885 scopus 로고    scopus 로고
    • Health indicators: eliminating bias from convenience sampling estimator
    • Hedt, B. L. and Pagano, M. (2011) Health indicators: eliminating bias from convenience sampling estimator. Statist. Med., 30, 560-568.
    • (2011) Statist. Med. , vol.30 , pp. 560-568
    • Hedt, B.L.1    Pagano, M.2
  • 13
    • 33748872266 scopus 로고    scopus 로고
    • Estimation in multiple-frame surveys
    • Lohr, S. L. and Rao, J. N. K. (2006) Estimation in multiple-frame surveys. J. Am. Statist. Ass., 101, 1019-1030.
    • (2006) J. Am. Statist. Ass. , vol.101 , pp. 1019-1030
    • Lohr, S.L.1    Rao, J.N.K.2
  • 16
    • 0012725435 scopus 로고    scopus 로고
    • Statistical matching: a paradigm for assessing the uncertainty in the procedure
    • Moriarity, C. and Scheuren, F. (2001) Statistical matching: a paradigm for assessing the uncertainty in the procedure. J. Off. Statist., 17, 407-422.
    • (2001) J. Off. Statist., , vol.17 , pp. 407-422
    • Moriarity, C.1    Scheuren, F.2
  • 17
    • 34250775947 scopus 로고    scopus 로고
    • Combining information from two surveys to estimate county-level prevalence rates of cancer risk factors and screening
    • Raghunathan, T. E., Xie, D., Schenker, N. and Parsons, V. L. (2007) Combining information from two surveys to estimate county-level prevalence rates of cancer risk factors and screening. J. Am. Statist. Ass., 102, 474-486.
    • (2007) J. Am. Statist. Ass. , vol.102 , pp. 474-486
    • Raghunathan, T.E.1    Xie, D.2    Schenker, N.3    Parsons, V.L.4
  • 18
    • 84855645743 scopus 로고    scopus 로고
    • Rolling Malaria Indicator Surveys (rMIS): a potential district-level malaria monitoring and evaluation (M&E) tool for programme managers
    • Roca-Feltrer, A., Lalloo, D., Phiri, K. and Terlouw, D. J. (2012) Rolling Malaria Indicator Surveys (rMIS): a potential district-level malaria monitoring and evaluation (M&E) tool for programme managers. Am. J. Trop. Med. Hyg., 86, 96-98.
    • (2012) Am. J. Trop. Med. Hyg. , vol.86 , pp. 96-98
    • Roca-Feltrer, A.1    Lalloo, D.2    Phiri, K.3    Terlouw, D.J.4
  • 21
    • 33750296863 scopus 로고    scopus 로고
    • Constructing socio-economic status indices: how to use principal component analysis
    • Vyas, S. and Kumuranayake, L. (2006) Constructing socio-economic status indices: how to use principal component analysis. Hlth Poly Plan, 21, 459-468.
    • (2006) Hlth Poly Plan , vol.21 , pp. 459-468
    • Vyas, S.1    Kumuranayake, L.2
  • 22
    • 84856440565 scopus 로고    scopus 로고
    • The validation of the rapid assessment procedures for loiasis (RAPLOA) in the Democratic Republic of Congo: health policy implications
    • article 25
    • Wanji, S., Akotshi, D., Kankou, J., Nigo, M., Tepage, F., Ukety, T., Diggle, P. and Remme, J. (2012) The validation of the rapid assessment procedures for loiasis (RAPLOA) in the Democratic Republic of Congo: health policy implications. Parsit. Vect., 5, article 25.
    • (2012) Parsit. Vect. , vol.5
    • Wanji, S.1    Akotshi, D.2    Kankou, J.3    Nigo, M.4    Tepage, F.5    Ukety, T.6    Diggle, P.7    Remme, J.8
  • 23
    • 0036188841 scopus 로고    scopus 로고
    • On estimation and prediction for spatial generalized linear mixed models
    • Zhang, H. (2002) On estimation and prediction for spatial generalized linear mixed models. Biometrics, 58, 129-136.
    • (2002) Biometrics , vol.58 , pp. 129-136
    • Zhang, H.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.