메뉴 건너뛰기




Volumn 19, Issue 1, 2015, Pages 147-183

Domain-driven co-location mining: Extraction, visualization and integration in a GIS

Author keywords

Co locations; Data mining; Domain constraints; GIS; Visualization

Indexed keywords

DATA VISUALIZATION; ENVIRONMENTAL MANAGEMENT; EXTRACTION; FLOW VISUALIZATION; GEOGRAPHIC INFORMATION SYSTEMS; LOCATION; VISUALIZATION;

EID: 84920705541     PISSN: 13846175     EISSN: 15737624     Source Type: Journal    
DOI: 10.1007/s10707-014-0209-3     Document Type: Article
Times cited : (24)

References (56)
  • 1
    • 0001882616 scopus 로고
    • Fast algorithms for mining association rules in large databases
    • VLDB. Morgan Kaufmann, Burlington, Massachusetts:
    • Agrawal R, Srikant R (1994) Fast algorithms for mining association rules in large databases. In: Bocca JB, Jarke M, Zaniolo C (eds) VLDB. Morgan Kaufmann, Burlington, Massachusetts, pp 487–499
    • (1994) Bocca JB , pp. 487-499
    • Agrawal, R.1    Srikant, R.2    Jarke, M.3    Zaniolo, C.4
  • 3
    • 84957703889 scopus 로고    scopus 로고
    • Knowledge-based visualization to support spatial data mining. In: IDA
    • Andrienko GL, Andrienko NV (1999) Knowledge-based visualization to support spatial data mining. In: IDA, pp 149–160
    • (1999) pp 149–160
    • Andrienko, G.L.1    Andrienko, N.V.2
  • 4
    • 72849142812 scopus 로고    scopus 로고
    • Interactive visual clustering of large collections of trajectories. In: VAST. IEEE Computer Society
    • Andrienko GL, Andrienko NV, Rinzivillo S, NanniM, Pedreschi D, Giannotti F (2009) Interactive visual clustering of large collections of trajectories. In: VAST. IEEE Computer Society, pp 3–10
    • (2009) pp 3–10
    • Andrienko, G.L.1    Andrienko, N.V.2    Rinzivillo, S.3
  • 6
    • 84920708598 scopus 로고    scopus 로고
    • Atherton J, Olson D, Farley L, Qauqau I (2005) Fiji watersheds at risk: watershed assessment for healthy reefs and fisheries
    • Atherton J, Olson D, Farley L, Qauqau I (2005) Fiji watersheds at risk: watershed assessment for healthy reefs and fisheries
  • 8
    • 79951784092 scopus 로고    scopus 로고
    • Investigating and reflecting on the integration of automatic data analysis and visualization in knowledge discovery
    • Bertini E, Lalanne D (2010) Investigating and reflecting on the integration of automatic data analysis and visualization in knowledge discovery. SIGKDD Explor Newsl 11(2):9–18
    • (2010) SIGKDD Explor Newsl , vol.11 , Issue.2 , pp. 9-18
    • Bertini, E.1    Lalanne, D.2
  • 10
    • 84920707763 scopus 로고    scopus 로고
    • Constraint-based data mining. In: Data mining and knowledge discovery handbook
    • Boulicaut JF, Jeudy B (2010) Constraint-based data mining. In: Data mining and knowledge discovery handbook, pp 339–354
    • (2010) pp 339–354
    • Boulicaut, J.F.1    Jeudy, B.2
  • 11
    • 85047342259 scopus 로고    scopus 로고
    • Mineset: an integrated system for data mining. In: KDD
    • Brunk C, Kelly J, Kohavi R (1997) Mineset: an integrated system for data mining. In: KDD, pp 135–138
    • (1997) pp 135–138
    • Brunk, C.1    Kelly, J.2    Kohavi, R.3
  • 12
    • 0035007850 scopus 로고    scopus 로고
    • Mafia: a maximal frequent itemset algorithm for transactional databases. In: ICDE. IEEE Computer Society
    • Burdick D, Calimlim M, Gehrke J (2001) Mafia: a maximal frequent itemset algorithm for transactional databases. In: ICDE. IEEE Computer Society, pp 443–452
    • (2001) pp 443–452
    • Burdick, D.1    Calimlim, M.2    Gehrke, J.3
  • 13
    • 62449333513 scopus 로고    scopus 로고
    • Domain driven data mining (d3m). In: ICDM workshops. IEEE Computer Society
    • Cao L (2008) Domain driven data mining (d3m). In: ICDM workshops. IEEE Computer Society, pp 74–76
    • (2008) pp 74–76
    • Cao, L.1
  • 14
    • 38049126056 scopus 로고    scopus 로고
    • Discovering emerging patterns in 1004 spatial databases: a multi-relational approach
    • Springer, LNCS:
    • Ceci M, Appice A, Malerba D (2007) Discovering emerging patterns in 1004 spatial databases: a multi-relational approach. In: PKDD, vol 4702. Springer, LNCS, pp 390–397
    • (2007) PKDD , vol.4702 , pp. 390-397
    • Ceci, M.1    Appice, A.2    Malerba, D.3
  • 15
    • 49749141618 scopus 로고    scopus 로고
    • Zonal co-location pattern discovery with dynamic parameters. In: ICDM. IEEE Computer Society
    • Celik M, Kang JM, Shekhar S (2007) Zonal co-location pattern discovery with dynamic parameters. In: ICDM. IEEE Computer Society, pp 433–438
    • (2007) pp 433–438
    • Celik, M.1    Kang, J.M.2    Shekhar, S.3
  • 16
    • 78149341279 scopus 로고    scopus 로고
    • Validating and refining clusters via visual rendering. In: ICDM. IEEE Computer Society
    • Chen K, Liu L (2003) Validating and refining clusters via visual rendering. In: ICDM. IEEE Computer Society, pp 501–504
    • (2003) pp 501–504
    • Chen, K.1    Liu, L.2
  • 17
    • 34548579999 scopus 로고    scopus 로고
    • Zigzag: a new algorithm for mining large inclusion dependencies in database. In: ICDM. IEEE Computer Society
    • De Marchi F, Petit JM (2003) Zigzag: a new algorithm for mining large inclusion dependencies in database. In: ICDM. IEEE Computer Society, pp 27–34
    • (2003) pp 27–34
    • De Marchi, F.1    Petit, J.M.2
  • 19
    • 85170282443 scopus 로고    scopus 로고
    • A density-based algorithm for discovering clusters in large spatial databases with noise. In: KDD
    • Ester M, Kriegel HP, Sander J, Xu X (1996) A density-based algorithm for discovering clusters in large spatial databases with noise. In: KDD, pp 226–231
    • (1996) pp 226–231
    • Ester, M.1    Kriegel, H.P.2    Sander, J.3    Xu, X.4
  • 20
    • 0002283033 scopus 로고    scopus 로고
    • From data mining to knowledge discovery in databases
    • Fayyad UM, Piatetsky-Shapiro G, Smyth P (1996) From data mining to knowledge discovery in databases. AI Mag 17(3):37–54
    • (1996) AI Mag , vol.17 , Issue.3 , pp. 37-54
    • Fayyad, U.M.1    Piatetsky-Shapiro, G.2    Smyth, P.3
  • 21
    • 84920711538 scopus 로고    scopus 로고
    • Petit JM(2004) ABS: Adaptive Borders Search of frequent itemsets
    • CEUR-WS.org: CEUR Workshop Proceedings, vol
    • Flouvat F, DeMarchi F, Petit JM(2004) ABS: Adaptive Borders Search of frequent itemsets. In: Bayardo RJ, Goethals B, Zaki MJ (eds) FIMI, CEUR-WS.org, CEUR Workshop Proceedings, vol 126
    • Bayardo RJ, Goethals B, Zaki MJ (eds) FIMI , pp. 126
    • Flouvat, F.1    DeMarchi, F.2
  • 22
    • 84920711383 scopus 로고    scopus 로고
    • Petit JM (2009) The izi project: easy prototyping of interesting pattern mining algorithms
    • Springer, LNCS:
    • Flouvat F, De Marchi F, Petit JM (2009) The izi project: easy prototyping of interesting pattern mining algorithms. In: Advanced techniques for datamining and knowledge discovery. Springer, LNCS, pp 1–15
    • Advanced techniques for datamining and knowledge discovery , pp. 1-15
    • Flouvat, F.1    De Marchi, F.2
  • 23
    • 77957863128 scopus 로고    scopus 로고
    • Flow mapping and multivariate visualization of large spatial interaction data
    • Guo D (2009) Flow mapping and multivariate visualization of large spatial interaction data. Trans Vis Comput Graph 15(6):1041–1048
    • (2009) Trans Vis Comput Graph , vol.15 , Issue.6 , pp. 1041-1048
    • Guo, D.1
  • 25
    • 0039253846 scopus 로고    scopus 로고
    • Yin Y (2000) Mining frequent patterns without candidate generation
    • Naughton JF: Bernstein PA (eds) SIGMOD conference. ACM
    • Han J, Pei J, Yin Y (2000) Mining frequent patterns without candidate generation. In: ChenW, Naughton JF, Bernstein PA (eds) SIGMOD conference. ACM, pp 1–12
    • ChenW , pp. 1-12
    • Han, J.1    Pei, J.2
  • 26
    • 33846973382 scopus 로고    scopus 로고
    • Vizster: visualizing online social networks
    • Heer J, Boyd D (2005) Vizster: visualizing online social networks, pp 23–25
    • (2005) pp 23–25
    • Heer, J.1    Boyd, D.2
  • 28
    • 10944243785 scopus 로고    scopus 로고
    • Discovering colocation patterns from spatial data sets: a general approach
    • Huang Y, Shekhar S, Xiong H (2004) Discovering colocation patterns from spatial data sets: a general approach. IEEE Trans Knowl Data Eng 16(12):1472–1485
    • (2004) IEEE Trans Knowl Data Eng , vol.16 , Issue.12 , pp. 1472-1485
    • Huang, Y.1    Shekhar, S.2    Xiong, H.3
  • 29
    • 33845237122 scopus 로고    scopus 로고
    • Mining co-location patterns with rare events from spatial data sets
    • Huang Y, Pei J, Xiong H (2006) Mining co-location patterns with rare events from spatial data sets. GeoInformatica 10(3):239–260
    • (2006) GeoInformatica , vol.10 , Issue.3 , pp. 239-260
    • Huang, Y.1    Pei, J.2    Xiong, H.3
  • 30
    • 0345201769 scopus 로고    scopus 로고
    • Tane: an efficient algorithm for discovering functional and approximate dependencies
    • Huhtala Y, Kärkkäinen J, Porkka P, Toivonen H (1999) Tane: an efficient algorithm for discovering functional and approximate dependencies. Comput J 42(2):100–111
    • (1999) Comput J , vol.42 , Issue.2 , pp. 100-111
    • Huhtala, Y.1    Kärkkäinen, J.2    Porkka, P.3    Toivonen, H.4
  • 31
    • 0002148113 scopus 로고
    • Floristic and ecological diversity of the vegetation on ultramafic rocks in new caledonia
    • Jaffré T (1992) Floristic and ecological diversity of the vegetation on ultramafic rocks in new caledonia. The vegetation of ultramafic (serpentine) soils, pp 101–107
    • (1992) The vegetation of ultramafic (serpentine) soils , pp. 101-107
    • Jaffré, T.1
  • 32
    • 77649274106 scopus 로고    scopus 로고
    • Spatial neighborhood based anomaly detection in sensor datasets
    • Janeja VP, Adam NR, Atluri V, Vaidya J (2010) Spatial neighborhood based anomaly detection in sensor datasets. Data Min Knowl Discov 20(2):221–258
    • (2010) Data Min Knowl Discov , vol.20 , Issue.2 , pp. 221-258
    • Janeja, V.P.1    Adam, N.R.2    Atluri, V.3    Vaidya, J.4
  • 33
    • 77957101277 scopus 로고    scopus 로고
    • Towards a scalable query rewriting algorithm in presence of value constraints
    • Jaudoin H, Flouvat F, Petit JM, Toumani F (2009) Towards a scalable query rewriting algorithm in presence of value constraints. J Data Semant 12:37–65
    • (2009) J Data Semant , vol.12 , pp. 37-65
    • Jaudoin, H.1    Flouvat, F.2    Petit, J.M.3    Toumani, F.4
  • 34
    • 84920711038 scopus 로고    scopus 로고
    • FP-Viz: visual frequent pattern mining. In: Proceedings of IEEE symposium on information visualization (InfoVis ’05)
    • Keim DA, Schneidewind J, Sips M (2005) FP-Viz: visual frequent pattern mining. In: Proceedings of IEEE symposium on information visualization (InfoVis ’05), Poster Paper
    • (2005) Poster Paper
    • Keim, D.A.1    Schneidewind, J.2    Sips, M.3
  • 35
    • 84957645397 scopus 로고
    • Discovery of spatial association rules in geographic information databases
    • Springer, Lecture Notes in Computer Science:
    • Koperski K, Han J (1995) Discovery of spatial association rules in geographic information databases. In: Egenhofer MJ, Herring JR (eds) SSD, vol 951. Springer, Lecture Notes in Computer Science, pp 47–66
    • (1995) SSD , vol.951 , pp. 47-66
    • Koperski, K.1    Han, J.2    Egenhofer, M.J.3    Herring, J.R.4
  • 36
    • 67049097997 scopus 로고    scopus 로고
    • Wifisviz: effective visualization of frequent itemsets. In: ICDM. IEEE Computer Society
    • Leung CKS, Irani P, Carmichael CL (2008) Wifisviz: effective visualization of frequent itemsets. In: ICDM. IEEE Computer Society, pp 875–880
    • (2008) pp 875–880
    • Leung, C.K.S.1    Irani, P.2    Carmichael, C.L.3
  • 37
    • 84890521199 scopus 로고    scopus 로고
    • Pincer search: a new algorithm for discovering the maximum frequent set
    • Springer, Lecture Notes in Computer Science:
    • Lin DI, Kedem ZM (1998) Pincer search: a new algorithm for discovering the maximum frequent set. In: Schek HJ, Saltor F, Ramos I, Alonso G (eds) EDBT, vol 1377. Springer, Lecture Notes in Computer Science, pp 105–119
    • (1998) EDBT , vol.1377 , pp. 105-119
    • Lin, D.I.1    Kedem, Z.M.2    Schek, H.J.3    Saltor, F.4    Ramos, I.5    Alonso, G.6
  • 38
    • 22944475382 scopus 로고    scopus 로고
    • Inducing multi-level association rules from multiple relations
    • Lisi FA, Malerba D (2004) Inducing multi-level association rules from multiple relations. Mach Learn 55(2):175–210
    • (2004) Mach Learn , vol.55 , Issue.2 , pp. 175-210
    • Lisi, F.A.1    Malerba, D.2
  • 39
    • 0020102027 scopus 로고
    • Least squares quantization in pcm
    • Lloyd S (1982) Least squares quantization in pcm. IEEE Trans Inf Theory 28(2):129–137
    • (1982) IEEE Trans Inf Theory , vol.28 , Issue.2 , pp. 129-137
    • Lloyd, S.1
  • 40
    • 77954754090 scopus 로고    scopus 로고
    • A relational perspective on spatial data mining
    • Malerba D (2008) A relational perspective on spatial data mining. Int J Data Mining Model Manag 1(1):103–118
    • (2008) Int J Data Mining Model Manag , vol.1 , Issue.1 , pp. 103-118
    • Malerba, D.1
  • 41
    • 21944442464 scopus 로고    scopus 로고
    • Levelwise search and borders of theories in knowledge discovery
    • Mannila H, Toivonen H (1997) Levelwise search and borders of theories in knowledge discovery. Data Min Knowl Disc 1(3):241–258
    • (1997) Data Min Knowl Disc , vol.1 , Issue.3 , pp. 241-258
    • Mannila, H.1    Toivonen, H.2
  • 42
    • 28544452631 scopus 로고    scopus 로고
    • A survey of interestingness measures for knowledge discovery
    • McGarry K (2005) A survey of interestingness measures for knowledge discovery. Knowl Eng Rev 20(01):39
    • (2005) Knowl Eng Rev , vol.20 , Issue.1 , pp. 39
    • McGarry, K.1
  • 43
    • 84997941468 scopus 로고    scopus 로고
    • Fast multidimensional scaling through sampling, springs and interpolation
    • Morrison A, Ross G, Chalmers M (2003) Fast multidimensional scaling through sampling, springs and interpolation. Inf Vis 2(1):68–77
    • (2003) Inf Vis , vol.2 , Issue.1 , pp. 68-77
    • Morrison, A.1    Ross, G.2    Chalmers, M.3
  • 44
    • 0032092760 scopus 로고    scopus 로고
    • Exploratory mining and pruning optimizations of constrained associations rules
    • Ng RT, Lakshmanan LVS, Han J, Pang A (1998) Exploratory mining and pruning optimizations of constrained associations rules. ACM SIGMOD Record 27(2):13–24
    • (1998) ACM SIGMOD Record , vol.27 , Issue.2 , pp. 13-24
    • Ng, R.T.1    Lakshmanan, L.V.S.2    Han, J.3    Pang, A.4
  • 45
    • 84878805459 scopus 로고    scopus 로고
    • Extending set-based dualization: application to pattern mining
    • IOS Press, Frontiers in Artificial Intelligence and Applications:
    • Nourine L, Petit JM (2012) Extending set-based dualization: application to pattern mining. In: Raedt LD, Bessière C, Dubois D, Doherty P, Frasconi P, Heintz F, Lucas PJF (eds) ECAI, vol 242. IOS Press, Frontiers in Artificial Intelligence and Applications, pp 630–635
    • (2012) ECAI , vol.242 , pp. 630-635
    • Nourine, L.1    Petit, J.M.2    Raedt, L.D.3    Bessière, C.4    Dubois, D.5    Doherty, P.6    Frasconi, P.7    Heintz, F.8    Lucas, P.J.F.9
  • 46
    • 0035016447 scopus 로고    scopus 로고
    • Mining frequent itemsets with convertible constraints
    • Pei J, Han J, Lakshmanan LVS (2001) Mining frequent itemsets with convertible constraints. Data Eng (Section 4):433–442
    • (2001) Data Eng (Section , vol.4 , pp. 433-442
    • Pei, J.1    Han, J.2    Lakshmanan, L.V.S.3
  • 47
    • 0001820920 scopus 로고    scopus 로고
    • X-means: extending k-means with efficient estimation of the number of clusters
    • Burlington, Massachusetts:
    • Pelleg D, Moore AW (2000) X-means: extending k-means with efficient estimation of the number of clusters. In: Langley P (ed) ICML. Morgan Kaufmann, Burlington, Massachusetts, pp 727–734
    • (2000) ICML. Morgan Kaufmann , pp. 727-734
    • Pelleg, D.1    Moore, A.W.2    Langley, P.3
  • 48
    • 70349950672 scopus 로고    scopus 로고
    • Mining spatial co-location patterns with dynamic neighborhood constraint
    • Springer, LNCS:
    • Qian F, He Q, He J (2009) Mining spatial co-location patterns with dynamic neighborhood constraint. In: ECML/PKDD’09, vol 5782. Springer, LNCS, pp 238–253
    • (2009) ECML/PKDD’09 , vol.5782 , pp. 238-253
    • Qian, F.1    He, Q.2    He, J.3
  • 49
    • 84920707855 scopus 로고    scopus 로고
    • Constraint-based pattern set mining. In: ICDM. IEEE Computer Society
    • Raedt LD, Zimmerman A (2007) Constraint-based pattern set mining. In: ICDM. IEEE Computer Society, pp 1–12
    • (2007) pp 1–12
    • Raedt, L.D.1    Zimmerman, A.2
  • 50
    • 84864568531 scopus 로고    scopus 로고
    • Spatial pattern mining for soil erosion characterization
    • Selmaoui-Folcher N, Flouvat F, Gay D, Rouet I (2011) Spatial pattern mining for soil erosion characterization. IJAEIS 2(2):73–92
    • (2011) IJAEIS , vol.2 , Issue.2 , pp. 73-92
    • Selmaoui-Folcher, N.1    Flouvat, F.2    Gay, D.3    Rouet, I.4
  • 51
    • 84944053697 scopus 로고    scopus 로고
    • Discovering spatial co-location patterns: a summary of results. In: SSTD
    • Shekhar S, Huang Y (2001) Discovering spatial co-location patterns: a summary of results. In: SSTD, pp 236–256
    • (2001) pp 236–256
    • Shekhar, S.1    Huang, Y.2
  • 53
    • 54949121720 scopus 로고    scopus 로고
    • Interactive hierarchical dimension ordering, spacing and filtering for exploration of high dimensional datasets. In: INFOVIS. IEEE Computer Society
    • Yang J, PengW,Ward MO, Rundensteiner EA (2003) Interactive hierarchical dimension ordering, spacing and filtering for exploration of high dimensional datasets. In: INFOVIS. IEEE Computer Society, pp 105–112
    • (2003) pp 105–112
    • Yang, J.1
  • 54
    • 84856617586 scopus 로고    scopus 로고
    • Mining spatial colocation patterns: a different framework
    • Yoo JS, Bow M (2012) Mining spatial colocation patterns: a different framework. Data Min Knowl Discov 24(1):159–194
    • (2012) Data Min Knowl Discov , vol.24 , Issue.1 , pp. 159-194
    • Yoo, J.S.1    Bow, M.2
  • 55
    • 33748365438 scopus 로고    scopus 로고
    • A joinless approach for mining spatial colocation patterns
    • Yoo JS, Shekhar S (2006) A joinless approach for mining spatial colocation patterns. IEEE TKDE 18(10):1323–1337
    • (2006) IEEE TKDE , vol.18 , Issue.10 , pp. 1323-1337
    • Yoo, J.S.1    Shekhar, S.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.