메뉴 건너뛰기




Volumn 8, Issue 1, 2014, Pages

Light detection and ranging and hyperspectral data for estimation of forest biomass: A review

Author keywords

Aboveground biomass; Data fusion; Hyperspectral; Light detection and ranging

Indexed keywords

BIOMASS; CARBON; DATA FUSION; FORESTRY; REMOTE SENSING; SPECTROSCOPY;

EID: 84920694440     PISSN: None     EISSN: 19313195     Source Type: Journal    
DOI: 10.1117/1.JRS.8.081598     Document Type: Review
Times cited : (33)

References (141)
  • 1
    • 0002747304 scopus 로고
    • Aboveground biomass estimates for tropical moist forests of the Brazilian Amazon
    • S. Brown and A. E. Lugo, "Aboveground biomass estimates for tropical moist forests of the Brazilian Amazon," Interciencia 17(1), 8-18 (1992).
    • (1992) Interciencia , vol.17 , Issue.1 , pp. 8-18
    • Brown, S.1    Lugo, A.E.2
  • 2
    • 20844459799 scopus 로고    scopus 로고
    • Aboveground forest biomass and the global carbon balance
    • R. A. Houghton, "Aboveground forest biomass and the global carbon balance," Global Change Biol. 11, 945-958 (2005).
    • (2005) Global Change Biol. , vol.11 , pp. 945-958
    • Houghton, R.A.1
  • 3
    • 78249231399 scopus 로고    scopus 로고
    • Status and future of laser scanning, synthetic aperture radar and hyperspectral remote sensing data for forest biomass assessment
    • B. Koch, "Status and future of laser scanning, synthetic aperture radar and hyperspectral remote sensing data for forest biomass assessment," ISPRS J. Photogramm. Remote Sens. 65, 581-590 (2010).
    • (2010) ISPRS J. Photogramm. Remote Sens. , vol.65 , pp. 581-590
    • Koch, B.1
  • 4
    • 77951127578 scopus 로고    scopus 로고
    • Fusion of hyperspectral and LiDAR remote sensing data for the estimation of tree stem diameters
    • M. Dalponte, L. Bruzzone, and D. Gianelle, "Fusion of hyperspectral and LiDAR remote sensing data for the estimation of tree stem diameters," in Geoscience and Remote Sensing Symposium, Vol. 2, pp. II-1008-II-1011 (2009).
    • (2009) Geoscience and Remote Sensing Symposium , vol.2 , pp. II1008-II1011
    • Dalponte, M.1    Bruzzone, L.2    Gianelle, D.3
  • 5
    • 0042890290 scopus 로고    scopus 로고
    • A review of remote sensing technology in support of the Kyoto Protocol
    • A. Rosenqvist et al., "A review of remote sensing technology in support of the Kyoto Protocol," Environ. Sci. Police 6, 441-435 (2003).
    • (2003) Environ. Sci. Police , vol.6 , pp. 441-1435
    • Rosenqvist, A.1
  • 7
    • 34249299163 scopus 로고    scopus 로고
    • Earth observations for estimating greenhouse gas emissions from deforestation in developing countries
    • R. Defries et al., "Earth observations for estimating greenhouse gas emissions from deforestation in developing countries," Environ. Sci. Policy 10, 385-394 (2007).
    • (2007) Environ. Sci. Policy , vol.10 , pp. 385-394
    • Defries, R.1
  • 8
    • 80052609457 scopus 로고    scopus 로고
    • Estimation of tropical rain forest aboveground biomass with small-footprint LiDAR and hyperspectral sensors
    • M. L. Clark et al., "Estimation of tropical rain forest aboveground biomass with small-footprint LiDAR and hyperspectral sensors," Remote Sens. Environ. 115, 2931-2942 (2011).
    • (2011) Remote Sens. Environ. , vol.115 , pp. 2931-2942
    • Clark, M.L.1
  • 9
    • 79959360264 scopus 로고    scopus 로고
    • Advances in remote sensing technology and implications for measuring and monitoring forest carbon stocks and change
    • S. Goetz and R. Dubayah, "Advances in remote sensing technology and implications for measuring and monitoring forest carbon stocks and change," Carbon Manage. 2, 231-244 (2011).
    • (2011) Carbon Manage. , vol.2 , pp. 231-244
    • Goetz, S.1    Dubayah, R.2
  • 10
    • 0027675978 scopus 로고
    • Forest sector carbon offset projects: Near-term opportunities to mitigate greenhouse gas emissions
    • R. K. Dixon et al., "Forest sector carbon offset projects: near-term opportunities to mitigate greenhouse gas emissions," Water Air Soil Pollut. 70, 561-577 (1993).
    • (1993) Water Air Soil Pollut. , vol.70 , pp. 561-577
    • Dixon, R.K.1
  • 11
    • 75449089680 scopus 로고    scopus 로고
    • Estimating biomass carbon stocks for a Mediterranean forest in central Spain using LiDAR height and intensity data
    • M. García et al., "Estimating biomass carbon stocks for a Mediterranean forest in central Spain using LiDAR height and intensity data," Remote Sens. Environ. 114, 816-830 (2010).
    • (2010) Remote Sens. Environ. , vol.114 , pp. 816-830
    • García, M.1
  • 12
    • 79958083302 scopus 로고    scopus 로고
    • A review of remote sensing of forest biomass and biofuel: Options for small-area applications
    • C. J. Gleason and J. Im, "A review of remote sensing of forest biomass and biofuel: options for small-area applications," GISci. Remote Sens. 48(2), 141-170 (2011).
    • (2011) GISci. Remote Sens. , vol.48 , Issue.2 , pp. 141-170
    • Gleason, C.J.1    Im, J.2
  • 13
    • 0029666686 scopus 로고    scopus 로고
    • Estimation of tree heights and stand volume using an airborne LiDAR system
    • M. Nilsson, "Estimation of tree heights and stand volume using an airborne LiDAR system," Remote Sens. Environ. 56(1), 1-7 (1996).
    • (1996) Remote Sens. Environ. , vol.56 , Issue.1 , pp. 1-7
    • Nilsson, M.1
  • 14
    • 33646702801 scopus 로고    scopus 로고
    • The potential and challenge of remote sensing-based biomass estimation
    • D. Lu, "The potential and challenge of remote sensing-based biomass estimation," Int. J. Remote Sens. 27(7), 1297-1328 (2006).
    • (2006) Int. J. Remote Sens. , vol.27 , Issue.7 , pp. 1297-1328
    • Lu, D.1
  • 15
    • 84890792960 scopus 로고    scopus 로고
    • Large-scale mapping of aboveground biomass of tropical rainforest in Sulawesi, Indonesia, using Landsat ETM+ and MODIS data
    • P. Propastin, "Large-scale mapping of aboveground biomass of tropical rainforest in Sulawesi, Indonesia, using Landsat ETM+ and MODIS data," GISci. Remote Sens. 50(6), 633-651 (2013).
    • (2013) GISci. Remote Sens. , vol.50 , Issue.6 , pp. 633-651
    • Propastin, P.1
  • 16
    • 1642628927 scopus 로고    scopus 로고
    • Spectral mixture analysis of the urban landscape in Indianapolis with Landsat ETM+ imagery
    • D. Lu and Q. Weng, "Spectral mixture analysis of the urban landscape in Indianapolis with Landsat ETM+ imagery," Photogramm. Eng. Remote Sens. 70(9), 1053-1062 (2004).
    • (2004) Photogramm. Eng. Remote Sens. , vol.70 , Issue.9 , pp. 1053-1062
    • Lu, D.1    Weng, Q.2
  • 17
    • 79952038910 scopus 로고    scopus 로고
    • Improved biomass estimation using the texture parameters of two high-resolution optical sensors
    • J. E. Nichol and M. R. Sarker, " Improved biomass estimation using the texture parameters of two high-resolution optical sensors," IEEE Trans. Geosci. Remote Sens. 49(3), 930-948 (2011).
    • (2011) IEEE Trans. Geosci. Remote Sens. , vol.49 , Issue.3 , pp. 930-948
    • Nichol, J.E.1    Sarker, M.R.2
  • 18
    • 84861313046 scopus 로고    scopus 로고
    • Improved forest biomass and carbon estimations using texture measures from WorldView-2 satellite data
    • S. Eckert, " Improved forest biomass and carbon estimations using texture measures from WorldView-2 satellite data," Remote Sens. 4(4), 810-829 (2012).
    • (2012) Remote Sens. , vol.4 , Issue.4 , pp. 810-829
    • Eckert, S.1
  • 19
    • 34250856733 scopus 로고    scopus 로고
    • Forest biomass estimation through NDVI composites. The role of remotely sensed data to assess Spanish forests as carbon sinks
    • F. González-Alonso et al., "Forest biomass estimation through NDVI composites. The role of remotely sensed data to assess Spanish forests as carbon sinks," Int. J. Remote Sens. 27(24), 5409-5415 (2006).
    • (2006) Int. J. Remote Sens. , vol.27 , Issue.24 , pp. 5409-5415
    • González-Alonso, F.1
  • 20
    • 34047183672 scopus 로고    scopus 로고
    • Biomass estimation over a large area based on stand wise forest inventory data and ASTER and MODIS satellite data: A possibility to verify carbon inventories
    • P. Muukkonen and J. Heiskanen, "Biomass estimation over a large area based on stand wise forest inventory data and ASTER and MODIS satellite data: a possibility to verify carbon inventories," Remote Sens. Environ. 107, 617-624 (2007).
    • (2007) Remote Sens. Environ. , vol.107 , pp. 617-624
    • Muukkonen, P.1    Heiskanen, J.2
  • 21
    • 2942528742 scopus 로고    scopus 로고
    • Using imaging spectroscopy to study ecosystem processes and properties
    • S. L. Ustin et al., "Using imaging spectroscopy to study ecosystem processes and properties," BioScience 54(6), 523-534 (2004).
    • (2004) BioScience , vol.54 , Issue.6 , pp. 523-534
    • Ustin, S.L.1
  • 22
    • 45249096660 scopus 로고    scopus 로고
    • Carnegie airborne observatory: In-flight fusion of hyperspectral imaging and waveform light detection and ranging for three-dimensional studies of ecosystems
    • G. P. Asner et al., "Carnegie airborne observatory: in-flight fusion of hyperspectral imaging and waveform light detection and ranging for three-dimensional studies of ecosystems," J. Appl. Remote Sens. 1, 013536 (2007).
    • (2007) J. Appl. Remote Sens. , vol.1 , pp. 013536
    • Asner, G.P.1
  • 23
    • 41249102807 scopus 로고    scopus 로고
    • Invasive species detection in Hawaiian rainforests using airborne imaging spectroscopy and LiDAR
    • G. P. Asner et al., "Invasive species detection in Hawaiian rainforests using airborne imaging spectroscopy and LiDAR," Remote Sens. Environ. 112, 1942-1955 (2008).
    • (2008) Remote Sens. Environ. , vol.112 , pp. 1942-1955
    • Asner, G.P.1
  • 24
    • 33846580982 scopus 로고    scopus 로고
    • Fusion of imaging spectrometer and LIDAR data over combined radiative transfer models for forest canopy characterization
    • B. Koetz et al., "Fusion of imaging spectrometer and LIDAR data over combined radiative transfer models for forest canopy characterization," Remote Sens. Environ. 106, 449-459 (2007).
    • (2007) Remote Sens. Environ. , vol.106 , pp. 449-459
    • Koetz, B.1
  • 25
    • 80052631826 scopus 로고    scopus 로고
    • Mapping biomass and stress in the Sierra Nevada using LiDAR and hyperspectral data fusion
    • A. Swatantran et al., "Mapping biomass and stress in the Sierra Nevada using LiDAR and hyperspectral data fusion," Remote Sens. Environ. 115, 2917-2930 (2011).
    • (2011) Remote Sens. Environ. , vol.115 , pp. 2917-2930
    • Swatantran, A.1
  • 26
    • 0033405891 scopus 로고    scopus 로고
    • Hyperspectral remote sensing for estimating biophysical parameters of forest ecosystems
    • P. M. Treitz and P. J. Howarth, "Hyperspectral remote sensing for estimating biophysical parameters of forest ecosystems," Progress in Phys. Geogr. 23, 359-390 (1999).
    • (1999) Progress in Phys. Geogr. , vol.23 , pp. 359-390
    • Treitz, P.M.1    Howarth, P.J.2
  • 27
    • 34247631013 scopus 로고    scopus 로고
    • A review of hyperspectral remote sensing and its application in vegetation and water resource studies
    • M. Govender, K. Chetty, and H. Bulcock, "A review of hyperspectral remote sensing and its application in vegetation and water resource studies," Water Sa 33(2), 145-151 (2007).
    • (2007) Water Sa , vol.33 , Issue.2 , pp. 145-151
    • Govender, M.1    Chetty, K.2    Bulcock, H.3
  • 28
    • 77952881448 scopus 로고    scopus 로고
    • Multispectral and hyperspectral remote sensing for identification and mapping of wetland vegetation: A review
    • E. Adam, O. Mutanga, and D. Rugege, "Multispectral and hyperspectral remote sensing for identification and mapping of wetland vegetation: a review," Wetlands Ecol. Manage. 18, 281-296 (2010).
    • (2010) Wetlands Ecol. Manage. , vol.18 , pp. 281-296
    • Adam, E.1    Mutanga, O.2    Rugege, D.3
  • 29
    • 0037342526 scopus 로고    scopus 로고
    • LiDAR remote sensing of forest structure
    • K. Lim et al., "LiDAR remote sensing of forest structure," Prog. Phys. Geogr. 27, 88-106 (2003).
    • (2003) Prog. Phys. Geogr. , vol.27 , pp. 88-106
    • Lim, K.1
  • 30
    • 77953496205 scopus 로고    scopus 로고
    • Retrieval of forest structural parameters using LiDAR remote sensing
    • M. Van Leeuwen and M. Nieuwenhuis, "Retrieval of forest structural parameters using LiDAR remote sensing," Eur. J. Forest Res. 129(4), 749-770 (2010).
    • (2010) Eur. J. Forest Res. , vol.129 , Issue.4 , pp. 749-770
    • Van Leeuwen, M.1    Nieuwenhuis, M.2
  • 31
    • 76149126793 scopus 로고    scopus 로고
    • Forest disturbance and recovery: A general review in the context of spaceborne remote sensing of impacts on aboveground biomass and canopy structure
    • S. Frolking et al., "Forest disturbance and recovery: a general review in the context of spaceborne remote sensing of impacts on aboveground biomass and canopy structure," J. Geophys. Res.: Biogeosci (2005-2012) 114(G2), 1-27 (2009).
    • (2009) J. Geophys. Res.: Biogeosci (2005-2012) , vol.114 , Issue.G2 , pp. 1-27
    • Frolking, S.1
  • 32
    • 84863421727 scopus 로고    scopus 로고
    • LiDAR sampling for large-area forest characterization: A review
    • M. A. Wulder et al., "LiDAR sampling for large-area forest characterization: a review," Remote Sens. Environ. 121, 196-209 (2012).
    • (2012) Remote Sens. Environ. , vol.121 , pp. 196-209
    • Wulder, M.A.1
  • 33
    • 0033920011 scopus 로고    scopus 로고
    • LiDAR remote sensing for forestry
    • R. O. Dubayah and J. B. Drake, "LiDAR remote sensing for forestry," J. Forestry, 98, 44-46 (2000).
    • (2000) J. Forestry , vol.98 , pp. 44-46
    • Dubayah, R.O.1    Drake, J.B.2
  • 34
    • 84868663200 scopus 로고    scopus 로고
    • A meta-analysis of terrestrial aboveground biomass estimation using LiDAR remote sensing
    • S. G. Zolkos, S. J. Goetz, and R. Dubayah, "A meta-analysis of terrestrial aboveground biomass estimation using LiDAR remote sensing," Remote Sens. Environ. 128, 289-298 (2013).
    • (2013) Remote Sens. Environ. , vol.128 , pp. 289-298
    • Zolkos, S.G.1    Goetz, S.J.2    Dubayah, R.3
  • 35
    • 25144455365 scopus 로고    scopus 로고
    • Tropical mangrove species discrimination using hyperspectral data: A laboratory study
    • C. Vaiphasa, S. Ongsomwang, and T. Vaiphasa, "Tropical mangrove species discrimination using hyperspectral data: a laboratory study," Estuarine Coast. Shelf Sci. 65, 371-379 (2005).
    • (2005) Estuarine Coast. Shelf Sci. , vol.65 , pp. 371-379
    • Vaiphasa, C.1    Ongsomwang, S.2    Vaiphasa, T.3
  • 36
    • 0035065726 scopus 로고    scopus 로고
    • Net primary production in tropical forests: An evaluation and synthesis of existing field data
    • D. A. Clark et al., "Net primary production in tropical forests: an evaluation and synthesis of existing field data," Ecol. Appl. 11, 371-384 (2001a).
    • (2001) Ecol. Appl. , vol.11 , pp. 371-384
    • Clark, D.A.1
  • 37
    • 0035068983 scopus 로고    scopus 로고
    • Measuring net primary production in forests: Concepts and field methods
    • D. A. Clark et al., "Measuring net primary production in forests: concepts and field methods," Ecol. Appl. 11, 356-370 (2001b).
    • (2001) Ecol. Appl. , vol.11 , pp. 356-370
    • Clark, D.A.1
  • 38
    • 0035575467 scopus 로고    scopus 로고
    • Biomass estimation in the Tapajos National Forest, Brazil Examination of sampling and allometric uncertainties
    • M. Keller, M. Palace, and G. Hurtt, "Biomass estimation in the Tapajos National Forest, Brazil Examination of sampling and allometric uncertainties," Forest Ecol. Manage. 154, 371-382 (2001).
    • (2001) Forest Ecol. Manage. , vol.154 , pp. 371-382
    • Keller, M.1    Palace, M.2    Hurtt, G.3
  • 39
    • 0030429715 scopus 로고    scopus 로고
    • Biomass estimation using satellite remote sensing data-an investigation on possible approaches for natural forest
    • P. S. Roy and S. A. Ravan, "Biomass estimation using satellite remote sensing data-an investigation on possible approaches for natural forest," J. Biosci. 21, 535-561 (1996).
    • (1996) J. Biosci. , vol.21 , pp. 535-561
    • Roy, P.S.1    Ravan, S.A.2
  • 40
    • 0033856482 scopus 로고    scopus 로고
    • Secondary forest age and tropical forest biomass estimation using Thematic Mapper imagery
    • R. F. Nelson et al., "Secondary forest age and tropical forest biomass estimation using Thematic Mapper imagery," Bioscience 50, 419-431 (2000).
    • (2000) Bioscience , vol.50 , pp. 419-431
    • Nelson, R.F.1
  • 41
    • 0034655779 scopus 로고    scopus 로고
    • Satellite estimation of tropical secondary forest aboveground biomass data from Brazil and Bolivia
    • M. K. Steininger, "Satellite estimation of tropical secondary forest aboveground biomass data from Brazil and Bolivia," Int. J. Remote Sens. 21, 1139-1157 (2000).
    • (2000) Int. J. Remote Sens. , vol.21 , pp. 1139-1157
    • Steininger, M.K.1
  • 42
    • 0037986221 scopus 로고    scopus 로고
    • Predictive relations of tropical forest biomass from Landsat TM data and their transferability between regions
    • G. M. Foody, D. S. Boyd, and M. E. J. Cutler, " Predictive relations of tropical forest biomass from Landsat TM data and their transferability between regions," Remote Sens. Environ. 85, 463-474 (2003).
    • (2003) Remote Sens. Environ. , vol.85 , pp. 463-474
    • Foody, G.M.1    Boyd, D.S.2    Cutler, M.E.J.3
  • 43
    • 5044238043 scopus 로고    scopus 로고
    • Estimating aboveground biomass using Landsat 7 ETM+ data across a managed landscape in northern Wisconsin, USA
    • D. Zheng et al., "Estimating aboveground biomass using Landsat 7 ETM+ data across a managed landscape in northern Wisconsin, USA," Remote Sens. Environ. 93, 402-411 (2004).
    • (2004) Remote Sens. Environ. , vol.93 , pp. 402-411
    • Zheng, D.1
  • 44
    • 0027972173 scopus 로고
    • Remote estimation of crown size, stand density, and biomass on the Oregon transect
    • Y.Wu and A. H. Strahler, "Remote estimation of crown size, stand density, and biomass on the Oregon transect," Ecol. Appl. 4, 299-312 (1994).
    • (1994) Ecol. Appl. , vol.4 , pp. 299-312
    • Wu, Y.1    Strahler, A.H.2
  • 45
    • 0031097734 scopus 로고    scopus 로고
    • Inversion of the Li-Strahler canopy reflectance model for mapping forest structure
    • C. E. Woodcock et al., "Inversion of the Li-Strahler canopy reflectance model for mapping forest structure," IEEE Trans. Geosci. Remote Sens. 35, 405-414 (1997).
    • (1997) IEEE Trans. Geosci. Remote Sens. , vol.35 , pp. 405-414
    • Woodcock, C.E.1
  • 46
    • 0142123345 scopus 로고    scopus 로고
    • Estimation of biomass of a mountainous tropical forest using Landsat TM data
    • M. Phua and H. Saito, "Estimation of biomass of a mountainous tropical forest using Landsat TM data," Can. J. Remote Sens. 29(4), 429-440 (2003).
    • (2003) Can. J. Remote Sens. , vol.29 , Issue.4 , pp. 429-440
    • Phua, M.1    Saito, H.2
  • 47
    • 0141885851 scopus 로고    scopus 로고
    • Measuring individual tree crown diameter with LiDAR and assessing its influence on estimating forest volume and biomass
    • S. C. Popescu, R. H.Wynne, and R. F. Nelson, "Measuring individual tree crown diameter with LiDAR and assessing its influence on estimating forest volume and biomass," Can. J. Remote Sens. 29(5), 564-577 (2003).
    • (2003) Can. J. Remote Sens. , vol.29 , Issue.5 , pp. 564-577
    • Popescu, S.C.1    Wynne, R.H.2    Nelson, R.F.3
  • 48
    • 66549083705 scopus 로고    scopus 로고
    • Comparison of AVIRIS and AISA airborne hyperspectral sensing for above-ground forest carbon mapping
    • IEEE
    • D. G. Goodenough et al., "Comparison of AVIRIS and AISA airborne hyperspectral sensing for above-ground forest carbon mapping," in IEEE Int. Geoscience and Remote Sensing Symposium, Vol. 2, pp. II-129-II-132, IEEE (2008).
    • (2008) IEEE Int. Geoscience and Remote Sensing Symposium , vol.2 , pp. II129-II132
    • Goodenough, D.G.1
  • 49
    • 84880394115 scopus 로고
    • Multi-sensor fusion: Optimization and operationalization for mapping applications
    • C. Pohl and J. L. Van Genderen, "Multi-sensor fusion: optimization and operationalization for mapping applications," Proc. SPIE 2232, 17-25 (1994).
    • (1994) Proc. SPIE , vol.2232 , pp. 17-25
    • Pohl, C.1    Van Genderen, J.L.2
  • 50
    • 0032030026 scopus 로고    scopus 로고
    • Review article multi-sensor image fusion in remote sensing: Concepts, methods and applications
    • C. Pohl and J. L. Van Genderen, "Review article multi-sensor image fusion in remote sensing: concepts, methods and applications," Int. J. Remote Sens. 19, 823-854 (1998).
    • (1998) Int. J. Remote Sens. , vol.19 , pp. 823-854
    • Pohl, C.1    Van Genderen, J.L.2
  • 51
    • 34748845694 scopus 로고    scopus 로고
    • Classification of floodplain vegetation by data fusion of spectral (CASI) and LiDAR data
    • G. W. Geerling et al., "Classification of floodplain vegetation by data fusion of spectral (CASI) and LiDAR data," Int. J. Remote Sens. 28, 4263-4284 (2007).
    • (2007) Int. J. Remote Sens. , vol.28 , pp. 4263-4284
    • Geerling, G.W.1
  • 53
    • 0030616088 scopus 로고    scopus 로고
    • Determination of mean tree height of forest stands using airborne laser scanner data
    • E. Næsset, "Determination of mean tree height of forest stands using airborne laser scanner data," ISPRS J. Photogramm. Remote Sens. 52, 49-56 (1997a).
    • (1997) ISPRS J. Photogramm. Remote Sens. , vol.52 , pp. 49-56
    • Næsset, E.1
  • 54
    • 75149133587 scopus 로고    scopus 로고
    • Reliability of LiDAR derived predictors of forest inventory attributes: A case study with Norway spruce
    • S. Magnussen, E. Næsset, and T. Gobakken, "Reliability of LiDAR derived predictors of forest inventory attributes: a case study with Norway spruce," Remote Sens. Environ. 114, 700-712 (2010).
    • (2010) Remote Sens. Environ. , vol.114 , pp. 700-712
    • Magnussen, S.1    Næsset, E.2    Gobakken, T.3
  • 55
    • 64549112589 scopus 로고    scopus 로고
    • Classifying species of individual trees by intensity and structure features derived from airborne laser scanner data
    • H. O. Ørka, E. Næsset, and O. M. Bollandsa˚s, "Classifying species of individual trees by intensity and structure features derived from airborne laser scanner data," Remote Sens. Environ. 113, 1163-1174 (2009).
    • (2009) Remote Sens. Environ. , vol.113 , pp. 1163-1174
    • Ørka, H.O.1    Næsset, E.2    Bollandsa˚s, O.M.3
  • 56
    • 77957301239 scopus 로고    scopus 로고
    • Forest inventory using small-footprint airborne LiDAR. Topographic laser ranging and scanning
    • CRC Press, Taylor & Francis
    • J. Hyyppä et al., "Forest inventory using small-footprint airborne LiDAR. Topographic laser ranging and scanning," in Topographic Laser Ranging and Scanning: Principles and Processing, pp. 335-370, CRC Press, Taylor & Francis (2009).
    • (2009) Topographic Laser Ranging and Scanning: Principles and Processing , pp. 335-370
    • Hyyppä, J.1
  • 57
    • 58149202324 scopus 로고    scopus 로고
    • Full-waveform topographic LiDAR: State-of-the-art
    • C. Mallet and F. Bretar, "Full-waveform topographic LiDAR: State-of-the-art," ISPRS J. Photogramm. Remote Sens. 64, 1-16 (2009).
    • (2009) ISPRS J. Photogramm. Remote Sens. , vol.64 , pp. 1-16
    • Mallet, C.1    Bretar, F.2
  • 58
    • 0024165767 scopus 로고
    • Estimating forest biomass and volume using airborne laser data
    • R. Nelson, W. Krabill, and J. Tonelli, " Estimating forest biomass and volume using airborne laser data," Remote Sens. Environ. 24, 247-267 (1988).
    • (1988) Remote Sens. Environ. , vol.24 , pp. 247-267
    • Nelson, R.1    Krabill, W.2    Tonelli, J.3
  • 59
    • 0033102470 scopus 로고    scopus 로고
    • Use of large-footprint scanning airborne LiDAR to estimate forest stand characteristics in the Western Cascades of Oregon
    • J. E. Means et al., "Use of large-footprint scanning airborne LiDAR to estimate forest stand characteristics in the Western Cascades of Oregon," Remote Sens. Environ. 67, 298-308 (1999).
    • (1999) Remote Sens. Environ. , vol.67 , pp. 298-308
    • Means, J.E.1
  • 60
    • 0036736967 scopus 로고    scopus 로고
    • LiDAR remote sensing of above-ground biomass in three biomes
    • M. A. Lefsky et al., "LiDAR remote sensing of above-ground biomass in three biomes," Global Ecol. Biogeogr. 11(5), 393-399 (2002).
    • (2002) Global Ecol. Biogeogr. , vol.11 , Issue.5 , pp. 393-399
    • Lefsky, M.A.1
  • 61
    • 0036328045 scopus 로고    scopus 로고
    • Sensitivity of large-footprint LiDAR to canopy structure and biomass in a neotropical rainforest
    • J. B. Drake et al., "Sensitivity of large-footprint LiDAR to canopy structure and biomass in a neotropical rainforest," Remote Sens. Environ. 81, 378-392 (2002).
    • (2002) Remote Sens. Environ. , vol.81 , pp. 378-392
    • Drake, J.B.1
  • 62
    • 11144294129 scopus 로고    scopus 로고
    • Measuring biomass and carbon in Delaware using an airborne profiling LIDAR
    • R. Nelson, A. Short, and M. Valenti, "Measuring biomass and carbon in Delaware using an airborne profiling LIDAR," Scand. J. Forest Res. 19(6), 500-511 (2004).
    • (2004) Scand. J. Forest Res. , vol.19 , Issue.6 , pp. 500-511
    • Nelson, R.1    Short, A.2    Valenti, M.3
  • 63
    • 4644287100 scopus 로고    scopus 로고
    • Fusion of small-footprint LiDAR and multispectral data to estimate plot-level volume and biomass in deciduous and pine forests in Virginia, USA
    • S. C. Popescu, R. H. Wynne, and J. A. Scrivani, "Fusion of small-footprint LiDAR and multispectral data to estimate plot-level volume and biomass in deciduous and pine forests in Virginia, USA," Forest Sci. 50(4), 551-565 (2004).
    • (2004) Forest Sci. , vol.50 , Issue.4 , pp. 551-565
    • Popescu, S.C.1    Wynne, R.H.2    Scrivani, J.A.3
  • 64
    • 56949106961 scopus 로고    scopus 로고
    • LiDAR remote sensing of forest biomass: A scale-invariant estimation approach using airborne lasers
    • K. Zhao, S. Popescu, and R. Nelson, "LiDAR remote sensing of forest biomass: a scale-invariant estimation approach using airborne lasers," Remote Sens. Environ. 113, 182-196 (2009).
    • (2009) Remote Sens. Environ. , vol.113 , pp. 182-196
    • Zhao, K.1    Popescu, S.2    Nelson, R.3
  • 65
    • 79957608914 scopus 로고    scopus 로고
    • Characterizing forest canopy structure with LiDAR composite metrics and machine learning
    • K. Zhao et al., " Characterizing forest canopy structure with LiDAR composite metrics and machine learning," Remote Sens. Environ. 115(8), 1978-1996 (2011).
    • (2011) Remote Sens. Environ. , vol.115 , Issue.8 , pp. 1978-1996
    • Zhao, K.1
  • 66
    • 34447550464 scopus 로고    scopus 로고
    • Investigating RaDAR-LiDAR synergy in a North Carolina pine forest
    • R. F. Nelson et al., "Investigating RaDAR-LiDAR synergy in a North Carolina pine forest," Remote Sens. Environ. 110(1), 98-108 (2007).
    • (2007) Remote Sens. Environ. , vol.110 , Issue.1 , pp. 98-108
    • Nelson, R.F.1
  • 67
    • 84864187384 scopus 로고    scopus 로고
    • Forest biomass estimation from airborne LiDAR data using machine learning approaches
    • C. J. Gleason and J. Im, "Forest biomass estimation from airborne LiDAR data using machine learning approaches," Remote Sens. Environ. 125, 80-91 (2012).
    • (2012) Remote Sens. Environ. , vol.125 , pp. 80-91
    • Gleason, C.J.1    Im, J.2
  • 68
    • 34548536506 scopus 로고    scopus 로고
    • Estimating biomass of individual pine trees using airborne LiDAR
    • S. C. Popescu, "Estimating biomass of individual pine trees using airborne LiDAR," Biomass Bioenergy 31, 646-655 (2007).
    • (2007) Biomass Bioenergy , vol.31 , pp. 646-655
    • Popescu, S.C.1
  • 69
    • 28444466556 scopus 로고    scopus 로고
    • Estimating forest biomass using small footprint LiDAR data: An individual tree-based approach that incorporates training data
    • Z. J. Bortolot and R. H. Wynne, "Estimating forest biomass using small footprint LiDAR data: an individual tree-based approach that incorporates training data," ISPRS J. Photogramm. Remote Sens. 59, 342-360 (2005).
    • (2005) ISPRS J. Photogramm. Remote Sens. , vol.59 , pp. 342-360
    • Bortolot, Z.J.1    Wynne, R.H.2
  • 70
    • 77953961040 scopus 로고    scopus 로고
    • Estimating stem volume and biomass of Pinus koraiensis using LiDAR data
    • D. Kwak et al., "Estimating stem volume and biomass of Pinus koraiensis using LiDAR data," J. Plant Res. 123(4), 421-432 (2010).
    • (2010) J. Plant Res. , vol.123 , Issue.4 , pp. 421-432
    • Kwak, D.1
  • 71
    • 84897027645 scopus 로고    scopus 로고
    • Estimation of wood volume and height of olive tree plantations using airborne discrete-return LiDAR data
    • J. Estornell et al., "Estimation of wood volume and height of olive tree plantations using airborne discrete-return LiDAR data," GISci. Remote Sens. 51(1), 17-29 (2014).
    • (2014) GISci. Remote Sens. , vol.51 , Issue.1 , pp. 17-29
    • Estornell, J.1
  • 72
    • 34548431766 scopus 로고    scopus 로고
    • Remote sensing of species mixtures in Conifer plantations using LiDAR height and intensity data
    • D. N. M. Donoghue et al., " Remote sensing of species mixtures in Conifer plantations using LiDAR height and intensity data," Remote Sens. Environ. 110(4), 509-522 (2007).
    • (2007) Remote Sens. Environ. , vol.110 , Issue.4 , pp. 509-522
    • Donoghue, D.N.M.1
  • 73
    • 30744475202 scopus 로고    scopus 로고
    • Estimates of forest canopy height and aboveground biomass using ICESat
    • M. A. Lefsky et al., "Estimates of forest canopy height and aboveground biomass using ICESat," Geophys. Res. Lett. 32(22), 1-4 (2005).
    • (2005) Geophys. Res. Lett. , vol.32 , Issue.22 , pp. 1-4
    • Lefsky, M.A.1
  • 74
    • 40049083404 scopus 로고    scopus 로고
    • Retrieving forest biomass through integration of CASI and LiDAR data
    • R. M. Lucas, A. C. Lee, and P. J. Bunting, "Retrieving forest biomass through integration of CASI and LiDAR data," Int. J. Remote Sens. 29, 1553-1577 (2008).
    • (2008) Int. J. Remote Sens. , vol.29 , pp. 1553-1577
    • Lucas, R.M.1    Lee, A.C.2    Bunting, P.J.3
  • 75
    • 75149145494 scopus 로고    scopus 로고
    • Fusion of LiDAR and imagery for estimating forest canopy fuels
    • T. Erdody and L. M. Moskal, "Fusion of LiDAR and imagery for estimating forest canopy fuels," Remote Sens. Environ. 114, 725-737 (2010).
    • (2010) Remote Sens. Environ. , vol.114 , pp. 725-737
    • Erdody, T.1    Moskal, L.M.2
  • 76
    • 70049095655 scopus 로고    scopus 로고
    • Per-segment aboveground forest biomass estimation using LiDAR-derived height percentile statistics
    • J. J. Riggins, J. A. Tullis, and F. M. Stephen, "Per-segment aboveground forest biomass estimation using LiDAR-derived height percentile statistics," GISci. Remote Sens. 46(2), 232-248 (2009).
    • (2009) GISci. Remote Sens. , vol.46 , Issue.2 , pp. 232-248
    • Riggins, J.J.1    Tullis, J.A.2    Stephen, F.M.3
  • 77
    • 77951111081 scopus 로고    scopus 로고
    • Forest carbon densities and uncertainties from LiDAR, quickbird, and field measurements in california
    • P. Gonzalez et al., "Forest carbon densities and uncertainties from LiDAR, quickbird, and field measurements in california," Remote Sens. Environ. 114(7), 1561-1575 (2010).
    • (2010) Remote Sens. Environ. , vol.114 , Issue.7 , pp. 1561-1575
    • Gonzalez, P.1
  • 78
    • 0032776183 scopus 로고    scopus 로고
    • Surface LiDAR remote sensing of basal area and biomass in deciduous forests of eastern Maryland, USA
    • M. A. Lefsky et al., "Surface LiDAR remote sensing of basal area and biomass in deciduous forests of eastern Maryland, USA," Remote Sens. Environ. 67, 83-98 (1999).
    • (1999) Remote Sens. Environ. , vol.67 , pp. 83-98
    • Lefsky, M.A.1
  • 79
    • 0036144262 scopus 로고    scopus 로고
    • Estimating tree height and tree crown properties using airborne scanning laser in a boreal nature reserve
    • E. Næsset and T. Økland, "Estimating tree height and tree crown properties using airborne scanning laser in a boreal nature reserve," Remote Sens. Environ. 79(1), 105-115 (2002).
    • (2002) Remote Sens. Environ. , vol.79 , Issue.1 , pp. 105-115
    • Næsset, E.1    Økland, T.2
  • 80
    • 0036165976 scopus 로고    scopus 로고
    • LiDAR remote sensing for ecosystem studies
    • M. A. Lefsky et al., "LiDAR remote sensing for ecosystem studies," Biosci. 52, 19-30 (2002).
    • (2002) Biosci. , vol.52 , pp. 19-30
    • Lefsky, M.A.1
  • 81
    • 11144345729 scopus 로고    scopus 로고
    • Estimation of above ground forest biomass from airborne discrete return laser scanner data using canopy-based quantile estimators
    • K. S. Lim and P. M. Treitz, " Estimation of above ground forest biomass from airborne discrete return laser scanner data using canopy-based quantile estimators," Scand. J. Forest Res. 19, 558-570 (2004).
    • (2004) Scand. J. Forest Res. , vol.19 , pp. 558-570
    • Lim, K.S.1    Treitz, P.M.2
  • 82
    • 84920685911 scopus 로고    scopus 로고
    • Estimating plot-scale biomass in a western North America mixed-conifer forest from LiDAR-derived tree stems
    • Texas A&M University, College Station
    • E. Rowell et al., "Estimating plot-scale biomass in a western North America mixed-conifer forest from LiDAR-derived tree stems," in Proc. SilviLaser Conf., pp. 14-16, Texas A&M University, College Station (2009).
    • (2009) Proc. SilviLaser Conf. , pp. 14-16
    • Rowell, E.1
  • 83
    • 84906945992 scopus 로고    scopus 로고
    • Forest biomass and carbon stock quantification using airborne LiDAR data: A case study over Huntington wildlife forest in the Adirondack Park
    • M. Li et al., "Forest biomass and carbon stock quantification using airborne LiDAR data: a case study over Huntington wildlife forest in the Adirondack Park," IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 7(7), 3143-3156 (2014).
    • (2014) IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. , vol.7 , Issue.7 , pp. 3143-3156
    • Li, M.1
  • 84
    • 33845571397 scopus 로고    scopus 로고
    • Forest volume and biomass estimation using small-footprint LiDAR-distributional parameters on a per-segment basis
    • J. A. N. Van Aardt, R. H. Wynne, and R. G. Oderwald, "Forest volume and biomass estimation using small-footprint LiDAR-distributional parameters on a per-segment basis," Forest Sci. 52(6), 636-649 (2006).
    • (2006) Forest Sci. , vol.52 , Issue.6 , pp. 636-649
    • Van Aardt, J.A.N.1    Wynne, R.H.2    Oderwald, R.G.3
  • 85
    • 40049097685 scopus 로고    scopus 로고
    • Vegetation height estimates for a mixed temperate forest using satellite laser altimetry
    • J. A. B. Rosette, R. R. J. North, and J. C. Suarez, "Vegetation height estimates for a mixed temperate forest using satellite laser altimetry," Int. J. Remote Sens. 29(5), 1475-1493 (2008).
    • (2008) Int. J. Remote Sens. , vol.29 , Issue.5 , pp. 1475-1493
    • Rosette, J.A.B.1    North, R.R.J.2    Suarez, J.C.3
  • 86
    • 36248980928 scopus 로고    scopus 로고
    • Forest vertical structure from GLAS: An evaluation using LVIS and SRTM data
    • G. Sun et al., "Forest vertical structure from GLAS: An evaluation using LVIS and SRTM data," Remote Sens. Environ. 112(1), 107-117 (2008).
    • (2008) Remote Sens. Environ. , vol.112 , Issue.1 , pp. 107-117
    • Sun, G.1
  • 87
    • 70350046427 scopus 로고    scopus 로고
    • Estimating forest canopy height and terrain relief from GLAS waveform metrics
    • L. I. Duncanson, K. O. Niemann, and M. A.Wulder, "Estimating forest canopy height and terrain relief from GLAS waveform metrics," Remote Sens. Environ. 114 (1), 138-154 (2010).
    • (2010) Remote Sens. Environ. , vol.114 , Issue.1 , pp. 138-154
    • Duncanson, L.I.1    Niemann, K.O.2    Wulder, M.A.3
  • 88
    • 51049115736 scopus 로고    scopus 로고
    • Regional aboveground forest biomass using airborne and space borne LiDAR in Québec
    • J. Boudreau et al., "Regional aboveground forest biomass using airborne and space borne LiDAR in Québec," Remote Sens. Environ. 112(10), 3876-3890 (2008).
    • (2008) Remote Sens. Environ. , vol.112 , Issue.10 , pp. 3876-3890
    • Boudreau, J.1
  • 89
    • 84873208445 scopus 로고    scopus 로고
    • Mapping forest aboveground biomass and its changes from LVIS waveform data
    • W. Huang et al., "Mapping forest aboveground biomass and its changes from LVIS waveform data," in IEEE Int. Geoscience and Remote Sensing Symposium (IGARSS), pp. 6561-6564 (2012).
    • (2012) IEEE Int. Geoscience and Remote Sensing Symposium (IGARSS) , pp. 6561-6564
    • Huang, W.1
  • 90
    • 84880843917 scopus 로고    scopus 로고
    • Detection of large above-ground biomass variability in lowland forest ecosystems by airborne LiDAR
    • J. Jubanski et al., "Detection of large above-ground biomass variability in lowland forest ecosystems by airborne LiDAR," Biogeosciences 10, 3917-3930 (2013).
    • (2013) Biogeosciences , vol.10 , pp. 3917-3930
    • Jubanski, J.1
  • 91
    • 84876327306 scopus 로고    scopus 로고
    • Mapping biomass change after forest disturbance: Applying LiDAR foot-print-derived models at key map scales
    • W. Huang et al., "Mapping biomass change after forest disturbance: applying LiDAR foot-print-derived models at key map scales," Remote Sens. Environ. 134, 319-332 (2013).
    • (2013) Remote Sens. Environ. , vol.134 , pp. 319-332
    • Huang, W.1
  • 92
    • 84880390059 scopus 로고    scopus 로고
    • Detecting tropical forest biomass dynamics from repeated airborne LiDAR measurements
    • V. Meyer et al., "Detecting tropical forest biomass dynamics from repeated airborne LiDAR measurements," Biogeosci. Discuss. 10, 1957-1992 (2013).
    • (2013) Biogeosci. Discuss. , vol.10 , pp. 1957-1992
    • Meyer, V.1
  • 93
    • 84868647283 scopus 로고    scopus 로고
    • Model-assisted estimation of change in forest biomass over an 11year period in a sample survey supported by airborne LiDAR: A case study with post-stratification to provide "activity data,"
    • E. Næsset et al., "Model-assisted estimation of change in forest biomass over an 11year period in a sample survey supported by airborne LiDAR: a case study with post-stratification to provide "activity data," Remote Sens. Environ. 128, 299-314 (2013).
    • (2013) Remote Sens. Environ. , vol.128 , pp. 299-314
    • Næsset, E.1
  • 94
    • 84880381193 scopus 로고    scopus 로고
    • Quantifying dynamics in tropical peat swamp forest biomass with multi-temporal LiDAR datasets
    • S. Englhart, J. Jubanski, and F. Sigegert, "Quantifying dynamics in tropical peat swamp forest biomass with multi-temporal LiDAR datasets," Remote Sens. 5, 2368-2388 (2013).
    • (2013) Remote Sens. , vol.5 , pp. 2368-2388
    • Englhart, S.1    Jubanski, J.2    Sigegert, F.3
  • 96
    • 84860178273 scopus 로고    scopus 로고
    • Using multi-frequency radar and discrete-return LiDAR measurements to estimate above-ground biomass and biomass components in a coastal temperate forest
    • O. W. Tsui et al., "Using multi-frequency radar and discrete-return LiDAR measurements to estimate above-ground biomass and biomass components in a coastal temperate forest," ISPRS J. Photogramm. Remote Sens. 69, 121-133 (2012).
    • (2012) ISPRS J. Photogramm. Remote Sens. , vol.69 , pp. 121-133
    • Tsui, O.W.1
  • 97
    • 84883747502 scopus 로고    scopus 로고
    • Integrating airborne LiDAR and space-borne radar via multivariate kriging to estimate above-ground biomass
    • O. W. Tsui et al., " Integrating airborne LiDAR and space-borne radar via multivariate kriging to estimate above-ground biomass," Remote Sens. Environ. 139, 340-352 (2013).
    • (2013) Remote Sens. Environ. , vol.139 , pp. 340-352
    • Tsui, O.W.1
  • 98
    • 57049105114 scopus 로고    scopus 로고
    • Hyperspectral remote sensing of vegetation
    • J. Im and J. R. Jensen, "Hyperspectral remote sensing of vegetation," Geogr. Compass 2(6), 1943-1961 (2008).
    • (2008) Geogr. Compass , vol.2 , Issue.6 , pp. 1943-1961
    • Im, J.1    Jensen, J.R.2
  • 99
    • 33644766733 scopus 로고    scopus 로고
    • The delineation of tree crowns in Australian mixed species forests using hyperspectral Compact Airborne Spectrographic Imager (CASI) data
    • P. Bunting and R. Lucas, " The delineation of tree crowns in Australian mixed species forests using hyperspectral Compact Airborne Spectrographic Imager (CASI) data," Remote Sens. Environ. 101(2), 230-248 (2006).
    • (2006) Remote Sens. Environ. , vol.101 , Issue.2 , pp. 230-248
    • Bunting, P.1    Lucas, R.2
  • 100
    • 26844454816 scopus 로고    scopus 로고
    • Mapping woodland species composition and structure using airborne spectral and LiDAR data
    • R. A. Hill and A. G. Thomson, "Mapping woodland species composition and structure using airborne spectral and LiDAR data," Int. J. Remote Sens. 26, 3763-3779 (2005).
    • (2005) Int. J. Remote Sens. , vol.26 , pp. 3763-3779
    • Hill, R.A.1    Thomson, A.G.2
  • 101
    • 21444447781 scopus 로고    scopus 로고
    • Hyperspectral discrimination of tropical rain forest tree species at leaf to crown scales
    • M. L. Clark, D. A. Roberts, and D. B. Clark, "Hyperspectral discrimination of tropical rain forest tree species at leaf to crown scales," Remote Sens. Environ. 96, 375-398 (2005).
    • (2005) Remote Sens. Environ. , vol.96 , pp. 375-398
    • Clark, M.L.1    Roberts, D.A.2    Clark, D.B.3
  • 102
    • 33745092487 scopus 로고    scopus 로고
    • Classification of coniferous tree species and age classes using hyperspectral data and geostatistical methods
    • H. Buddenbaum, M. Schlerf, and J. Hill, "Classification of coniferous tree species and age classes using hyperspectral data and geostatistical methods," Int. J. Remote Sens. 26, 5453-5465 (2005).
    • (2005) Int. J. Remote Sens. , vol.26 , pp. 5453-5465
    • Buddenbaum, H.1    Schlerf, M.2    Hill, J.3
  • 103
    • 53349084895 scopus 로고    scopus 로고
    • Fusion of hyperspectral and LiDAR remote sensing data for classification of complex forest areas
    • M. Dalponte, L. Bruzzone, and D. Gianelle, "Fusion of hyperspectral and LiDAR remote sensing data for classification of complex forest areas," IEEE Trans. Geosci. Remote Sens. 46, 1416-1427 (2008).
    • (2008) IEEE Trans. Geosci. Remote Sens. , vol.46 , pp. 1416-1427
    • Dalponte, M.1    Bruzzone, L.2    Gianelle, D.3
  • 104
    • 77956884950 scopus 로고    scopus 로고
    • Assessing the utility of airborne hyperspectral and LiDAR data for species distribution mapping in the coastal Pacific Northwest, Canada
    • T. G. Jones, N. C. Coops, and T. Sharma, "Assessing the utility of airborne hyperspectral and LiDAR data for species distribution mapping in the coastal Pacific Northwest, Canada," Remote Sens. Environ. 114, 2841-2852 (2010).
    • (2010) Remote Sens. Environ. , vol.114 , pp. 2841-2852
    • Jones, T.G.1    Coops, N.C.2    Sharma, T.3
  • 105
    • 84860389247 scopus 로고    scopus 로고
    • Mapping bush encroaching species by seasonal differences in hyperspectral imagery
    • J. Oldeland et al., "Mapping bush encroaching species by seasonal differences in hyperspectral imagery," Remote Sens. 2, 1416-1438 (2010).
    • (2010) Remote Sens. , vol.2 , pp. 1416-1438
    • Oldeland, J.1
  • 106
    • 84859644121 scopus 로고    scopus 로고
    • Classification of savanna tree species, in the Greater Kruger National Park region, by integrating hyperspectral and LiDAR data in a Random Forest data mining environment
    • L. Naidoo et al., "Classification of savanna tree species, in the Greater Kruger National Park region, by integrating hyperspectral and LiDAR data in a Random Forest data mining environment," ISPRS J. Photogramm. Remote Sens. 69, 167-179 (2012).
    • (2012) ISPRS J. Photogramm. Remote Sens. , vol.69 , pp. 167-179
    • Naidoo, L.1
  • 107
    • 84879939494 scopus 로고    scopus 로고
    • Tree species classification in boreal forests with hyperspectral data
    • M. Dalponte et al., "Tree species classification in boreal forests with hyperspectral data," IEEE Trans. Geosci. Remote Sens. 51(5), 2632-2645 (2013).
    • (2013) IEEE Trans. Geosci. Remote Sens. , vol.51 , Issue.5 , pp. 2632-2645
    • Dalponte, M.1
  • 108
    • 84878146470 scopus 로고    scopus 로고
    • Multi-temporal hyperspectral mixture analysis and feature selection for invasive species mapping in rainforests
    • B. Somers and G. P. Asner, "Multi-temporal hyperspectral mixture analysis and feature selection for invasive species mapping in rainforests," Remote Sens. Environ. 136, 14-27 (2013).
    • (2013) Remote Sens. Environ. , vol.136 , pp. 14-27
    • Somers, B.1    Asner, G.P.2
  • 109
    • 44649115718 scopus 로고    scopus 로고
    • Leaf chlorophyll content retrieval from airborne hyperspectral remote sensing imagery
    • Y. Zhang et al., "Leaf chlorophyll content retrieval from airborne hyperspectral remote sensing imagery," Remote Sens. Environ. 112, 3234-3247 (2008).
    • (2008) Remote Sens. Environ. , vol.112 , pp. 3234-3247
    • Zhang, Y.1
  • 110
    • 44749088075 scopus 로고    scopus 로고
    • Estimating chlorophyll content from hyperspectral vegetation indices: Modeling and validation
    • C. Wu et al., "Estimating chlorophyll content from hyperspectral vegetation indices: modeling and validation," Agric. Forest Meteorol. 148, 1230-1241 (2008).
    • (2008) Agric. Forest Meteorol. , vol.148 , pp. 1230-1241
    • Wu, C.1
  • 111
    • 0842327886 scopus 로고    scopus 로고
    • Needle chlorophyll content estimation through model inversion using hyperspectral data from boreal conifer forest canopies
    • P. J. Zarco-Tejada et al., "Needle chlorophyll content estimation through model inversion using hyperspectral data from boreal conifer forest canopies," Remote Sens. Environ. 89, 189-199 (2004).
    • (2004) Remote Sens. Environ. , vol.89 , pp. 189-199
    • Zarco-Tejada, P.J.1
  • 112
    • 2542594695 scopus 로고    scopus 로고
    • Wavelet transform applied to EO-1 hyperspectral data for forest LAI and crown closure mapping
    • R. Pu and P. Gong, "Wavelet transform applied to EO-1 hyperspectral data for forest LAI and crown closure mapping," Remote Sens. Environ. 91, 212-224 (2004).
    • (2004) Remote Sens. Environ. , vol.91 , pp. 212-224
    • Pu, R.1    Gong, P.2
  • 113
    • 0037431389 scopus 로고    scopus 로고
    • Above-ground biomass assessment of Mediterranean forests using airborne imaging spectrometry: The DAIS Peyne experiment
    • S. M. De Jong, E. J. Pebesma, and B. Lacaze, "Above-ground biomass assessment of Mediterranean forests using airborne imaging spectrometry: the DAIS Peyne experiment," Int. J. Remote Sens. 24, 1505-1520 (2003).
    • (2003) Int. J. Remote Sens. , vol.24 , pp. 1505-1520
    • De Jong, S.M.1    Pebesma, E.J.2    Lacaze, B.3
  • 114
    • 57049084609 scopus 로고    scopus 로고
    • Hyperspectral predictors for monitoring biomass production in Mediterranean mountain grasslands: Majella National Park, Italy
    • M. A. Cho and A. K. Skidmore, "Hyperspectral predictors for monitoring biomass production in Mediterranean mountain grasslands: Majella National Park, Italy," Int. J. Remote Sens. 30, 499-515 (2009).
    • (2009) Int. J. Remote Sens. , vol.30 , pp. 499-515
    • Cho, M.A.1    Skidmore, A.K.2
  • 115
    • 0141792270 scopus 로고    scopus 로고
    • Reflectance measurement of canopy biomass and nitrogen status in wheat crops using normalized difference vegetation indices and partial least squares regression
    • P. M. Hansen and J. K. Schjoerring, "Reflectance measurement of canopy biomass and nitrogen status in wheat crops using normalized difference vegetation indices and partial least squares regression," Remote Sens. Environ. 86, 542-553 (2003).
    • (2003) Remote Sens. Environ. , vol.86 , pp. 542-553
    • Hansen, P.M.1    Schjoerring, J.K.2
  • 116
    • 36248949001 scopus 로고    scopus 로고
    • Estimation of green grass/herb biomass from airborne hyperspectral imagery using spectral indices and partial least squares regression
    • M. A. Cho et al., "Estimation of green grass/herb biomass from airborne hyperspectral imagery using spectral indices and partial least squares regression," Int. J. Appl. Earth Obs. Geoinf. 9, 414-424 (2007).
    • (2007) Int. J. Appl. Earth Obs. Geoinf. , vol.9 , pp. 414-424
    • Cho, M.A.1
  • 117
    • 0037334132 scopus 로고    scopus 로고
    • Remote sensing estimates of boreal and temperate forest woody biomass: Carbon pools, sources, and sinks
    • J. Dong et al., "Remote sensing estimates of boreal and temperate forest woody biomass: carbon pools, sources, and sinks," Remote Sens. Environ. 84(3), 393-410 (2003).
    • (2003) Remote Sens. Environ. , vol.84 , Issue.3 , pp. 393-410
    • Dong, J.1
  • 118
    • 78049251348 scopus 로고    scopus 로고
    • Improving discrimination of savanna tree species through a multiple-endmember spectral angle mapper approach: Canopy-level analysis
    • M. A. Cho et al., "Improving discrimination of savanna tree species through a multiple-endmember spectral angle mapper approach: Canopy-level analysis," IEEE Trans. Geosci. Remote Sens. 48(11), 4133-4142 (2010).
    • (2010) IEEE Trans. Geosci. Remote Sens. , vol.48 , Issue.11 , pp. 4133-4142
    • Cho, M.A.1
  • 119
    • 84878355763 scopus 로고    scopus 로고
    • Hyperspectral discrimination of tree species with different classifications using single-and multiple-endmember
    • A. Ghiyamat et al., "Hyperspectral discrimination of tree species with different classifications using single-and multiple-endmember," Int. J. Appl. Earth Obs. Geoinf. 23, 177- 191 (2013).
    • (2013) Int. J. Appl. Earth Obs. Geoinf. , vol.23 , pp. 177-191
    • Ghiyamat, A.1
  • 120
    • 84864583487 scopus 로고    scopus 로고
    • Characterization of forest crops with a range of nutrient and water treatments using AISA hyperspectral imagery
    • B. Gong et al., "Characterization of forest crops with a range of nutrient and water treatments using AISA hyperspectral imagery," GISci. Remote Sens. 49(4), 463-491 (2012).
    • (2012) GISci. Remote Sens. , vol.49 , Issue.4 , pp. 463-491
    • Gong, B.1
  • 121
    • 31344449225 scopus 로고    scopus 로고
    • Inversion of a forest reflectance model to estimate structural canopy variables from hyperspectral remote sensing data
    • M. Schlerf and C. Atzberger, "Inversion of a forest reflectance model to estimate structural canopy variables from hyperspectral remote sensing data," Remote Sens. Environ. 100, 281-294 (2006).
    • (2006) Remote Sens. Environ. , vol.100 , pp. 281-294
    • Schlerf, M.1    Atzberger, C.2
  • 122
    • 30444444937 scopus 로고    scopus 로고
    • Mapping sagebrush distribution using fusion of hyperspectral and LiDAR classifications
    • J. T. Mundt, D. R. Streutker, and N. F. Glenn, "Mapping sagebrush distribution using fusion of hyperspectral and LiDAR classifications," Photogramm. Eng. Remote Sens. 72, 47 (2006).
    • (2006) Photogramm. Eng. Remote Sens. , vol.72 , pp. 47
    • Mundt, J.T.1    Streutker, D.R.2    Glenn, N.F.3
  • 123
    • 45849107278 scopus 로고    scopus 로고
    • Multi-source land cover classification for forest fire management based on imaging spectrometry and LiDAR data
    • B. Koetz et al., "Multi-source land cover classification for forest fire management based on imaging spectrometry and LiDAR data," Forest Ecol. Manage. 256(3), 263-271 (2008).
    • (2008) Forest Ecol. Manage. , vol.256 , Issue.3 , pp. 263-271
    • Koetz, B.1
  • 124
    • 84879959396 scopus 로고    scopus 로고
    • Classification of Spruce and Pine Trees Using Active Hyperspectral LiDAR
    • J. Vauhkonen et al., "Classification of Spruce and Pine Trees Using Active Hyperspectral LiDAR," IEEE Geosci. Remote Sens. Lett. 10, 1138-1141 (2013).
    • (2013) IEEE Geosci. Remote Sens. Lett. , vol.10 , pp. 1138-1141
    • Vauhkonen, J.1
  • 125
    • 84859928062 scopus 로고    scopus 로고
    • Tree species classification in the Southern Alps based on the fusion of very high geometrical resolution multispectral/hyperspectral images and LiDAR data
    • M. Dalponte, L. Bruzzone, and D. Gianelle, "Tree species classification in the Southern Alps based on the fusion of very high geometrical resolution multispectral/hyperspectral images and LiDAR data," Remote Sens. Environ. 123, 258-270 (2012).
    • (2012) Remote Sens. Environ. , vol.123 , pp. 258-270
    • Dalponte, M.1    Bruzzone, L.2    Gianelle, D.3
  • 126
    • 84870001381 scopus 로고    scopus 로고
    • Fusing small-footprint waveform LiDAR and hyperspectral data for canopy-level species classification and herbaceous biomass modeling in savanna ecosystems
    • M. J. D. Sarrazin et al., "Fusing small-footprint waveform LiDAR and hyperspectral data for canopy-level species classification and herbaceous biomass modeling in savanna ecosystems," Can. J. Remote Sens. 37(6), 653-665 (2011).
    • (2011) Can. J. Remote Sens. , vol.37 , Issue.6 , pp. 653-665
    • Sarrazin, M.J.D.1
  • 127
    • 34648828198 scopus 로고    scopus 로고
    • Object-oriented classification of LIDAR-fused hyperspectral imagery for tree species identification in an urban environment
    • IEEE
    • R. Sugumaran and M. Voss, "Object-oriented classification of LIDAR-fused hyperspectral imagery for tree species identification in an urban environment," in Urban Remote Sensing Joint Event, pp. 1-6, IEEE (2007).
    • (2007) Urban Remote Sensing Joint Event , pp. 1-6
    • Sugumaran, R.1    Voss, M.2
  • 128
    • 44649176419 scopus 로고    scopus 로고
    • Seasonal effect on tree species classification in an urban environment using hyperspectral data, LiDAR, and an object-oriented approach
    • M. Voss and R. Sugumaran, "Seasonal effect on tree species classification in an urban environment using hyperspectral data, LiDAR, and an object-oriented approach," Sensors 8, 3020-3036 (2008).
    • (2008) Sensors , vol.8 , pp. 3020-3036
    • Voss, M.1    Sugumaran, R.2
  • 129
    • 79957693432 scopus 로고    scopus 로고
    • Tree classification with fused mobile laser scanning and hyperspectral data
    • E. Puttonen et al., "Tree classification with fused mobile laser scanning and hyperspectral data," Sensors 11, 5158-5182 (2011).
    • (2011) Sensors , vol.11 , pp. 5158-5182
    • Puttonen, E.1
  • 130
    • 79957751533 scopus 로고    scopus 로고
    • Optimizing the use of hyperspectral and LiDAR data for mapping reedbed habitats
    • A. O. Onojeghuo and G. A. Blackburn, "Optimizing the use of hyperspectral and LiDAR data for mapping reedbed habitats," Remote Sens. Environ. 115, 2025-2034 (2011).
    • (2011) Remote Sens. Environ. , vol.115 , pp. 2025-2034
    • Onojeghuo, A.O.1    Blackburn, G.A.2
  • 131
    • 40949141103 scopus 로고    scopus 로고
    • Integrating waveform LiDAR with hyperspectral imagery for inventory of a northern temperate forest
    • J. E. Anderson et al., "Integrating waveform LiDAR with hyperspectral imagery for inventory of a northern temperate forest," Remote Sens. Environ. 112, 1856-1870 (2008).
    • (2008) Remote Sens. Environ. , vol.112 , pp. 1856-1870
    • Anderson, J.E.1
  • 132
    • 84857753065 scopus 로고    scopus 로고
    • Forest structure modeling with combined airborne hyperspectral and LiDAR data
    • H. Latifi, F. Fassnacht, and B. Koch, "Forest structure modeling with combined airborne hyperspectral and LiDAR data," Remote Sens. Environ. 121, 10-25 (2012).
    • (2012) Remote Sens. Environ. , vol.121 , pp. 10-25
    • Latifi, H.1    Fassnacht, F.2    Koch, B.3
  • 133
    • 1542396705 scopus 로고    scopus 로고
    • Quantifying canopy height underestimation by laser pulse penetration in small-footprint airborne laser scanning data
    • D. L. A. Gaveau and R. A. Hill, "Quantifying canopy height underestimation by laser pulse penetration in small-footprint airborne laser scanning data," Can. J. Remote Sens. 29(5), 650-657 (2003).
    • (2003) Can. J. Remote Sens. , vol.29 , Issue.5 , pp. 650-657
    • Gaveau, D.L.A.1    Hill, R.A.2
  • 134
    • 21444439599 scopus 로고    scopus 로고
    • Simulation study for finding optimal lidar acquisition parameters for forest height retrieval
    • J. L. Lovell et al., "Simulation study for finding optimal lidar acquisition parameters for forest height retrieval," Forest Ecol. Manage. 214(1), 398-412 (2005).
    • (2005) Forest Ecol. Manage. , vol.214 , Issue.1 , pp. 398-412
    • Lovell, J.L.1
  • 135
    • 84879682356 scopus 로고    scopus 로고
    • The extraction of forest CO2 storage capacity using high-resolution airborne LiDAR data
    • S. J. Lee, J. R. Kim, and Y. S. Choi, "The extraction of forest CO2 storage capacity using high-resolution airborne LiDAR data," GISci. Remote Sens. 50(2), 154-171 (2013).
    • (2013) GISci. Remote Sens. , vol.50 , Issue.2 , pp. 154-171
    • Lee, S.J.1    Kim, J.R.2    Choi, Y.S.3
  • 136
    • 84893373886 scopus 로고    scopus 로고
    • Above ground biomass estimation in an African tropical forest with LiDAR and hyperspectral data
    • G. V. Laurin et al., "Above ground biomass estimation in an African tropical forest with LiDAR and hyperspectral data," ISPRS J. Photogramm. Remote Sens. 89, 49-58 (2014).
    • (2014) ISPRS J. Photogramm. Remote Sens. , vol.89 , pp. 49-58
    • Laurin, G.V.1
  • 137
    • 84864414932 scopus 로고    scopus 로고
    • Multi-and hyperspectral geologic remote sensing: A review
    • F. D. Van der Meer et al., "Multi-and hyperspectral geologic remote sensing: a review," Int. J. Appl. Earth Obs. Geoinf. 14(1), 112-128 (2012).
    • (2012) Int. J. Appl. Earth Obs. Geoinf. , vol.14 , Issue.1 , pp. 112-128
    • Van Der Meer, F.D.1
  • 138
    • 0031236758 scopus 로고    scopus 로고
    • Image segmentation and discriminant analysis for the identification of land cover units in ecology
    • A. Lobo, "Image segmentation and discriminant analysis for the identification of land cover units in ecology," IEEE Trans. Geosci. Remote Sens. 35, 1136-1145 (1997).
    • (1997) IEEE Trans. Geosci. Remote Sens. , vol.35 , pp. 1136-1145
    • Lobo, A.1
  • 139
    • 0142003038 scopus 로고    scopus 로고
    • A multi-scale segmentation/object relationship modelling methodology for landscape analysis
    • C. Burnett and T. Blaschke, "A multi-scale segmentation/object relationship modelling methodology for landscape analysis," Ecol. Model. 168, 233-249 (2003).
    • (2003) Ecol. Model. , vol.168 , pp. 233-249
    • Burnett, C.1    Blaschke, T.2
  • 140
    • 12344295841 scopus 로고    scopus 로고
    • Automated tree recognition in old growth conifer stands with high resolution digital imagery
    • D. G. Leckie et al., "Automated tree recognition in old growth conifer stands with high resolution digital imagery," Remote Sens. Environ. 94, 311-326 (2005).
    • (2005) Remote Sens. Environ. , vol.94 , pp. 311-326
    • Leckie, D.G.1
  • 141
    • 84884758150 scopus 로고    scopus 로고
    • NASA Goddard's LiDAR, Hyperspectral and Thermal (G-LiHT) Airborne Imager
    • B. D. Cook et al., "NASA Goddard's LiDAR, Hyperspectral and Thermal (G-LiHT) Airborne Imager," Remote Sens. 5, 4045-4066 (2013).
    • (2013) Remote Sens. , vol.5 , pp. 4045-4066
    • Cook, B.D.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.