메뉴 건너뛰기




Volumn 23, Issue 11, 2014, Pages 2543-2552

Development and validation of a risk score predicting risk of colorectal cancer

Author keywords

[No Author keywords available]

Indexed keywords

ADULT; AGED; ALCOHOL CONSUMPTION; ARTICLE; BODY MASS; CANCER RISK; CANCER SCREENING; COLORECTAL CANCER; DIABETES MELLITUS; FAMILY HISTORY; FEMALE; HUMAN; MAJOR CLINICAL STUDY; MALE; PREVALENCE; PROPORTIONAL HAZARDS MODEL; PROSPECTIVE STUDY; RISK FACTOR; SMOKING; VALIDATION STUDY; COLORECTAL NEOPLASMS; EARLY DIAGNOSIS; MIDDLE AGED;

EID: 84920134143     PISSN: 10559965     EISSN: None     Source Type: Journal    
DOI: 10.1158/1055-9965.EPI-14-0206     Document Type: Article
Times cited : (17)

References (54)
  • 2
    • 84872196519 scopus 로고    scopus 로고
    • RNA biomarkers in colorectal cancer
    • Bustin SA, Murphy J. RNA biomarkers in colorectal cancer. Methods 2013;59:116-25.
    • (2013) Methods , vol.59 , pp. 116-125
    • Bustin, S.A.1    Murphy, J.2
  • 4
    • 42949127635 scopus 로고    scopus 로고
    • Screening and surveillance for the early detection of colorectal cancer and adenomatous polyps, 2008: A joint guideline from the American Cancer Society, the US Multi-Society Task Force on Colorectal Cancer, and the American College of Radiology
    • Levin B, Lieberman DA, McFarland B, Andrews KS, Brooks D, Bond J, et al. Screening and surveillance for the early detection of colorectal cancer and adenomatous polyps, 2008: a joint guideline from the American Cancer Society, the US Multi-Society Task Force on Colorectal Cancer, and the American College of Radiology. Gastroenterology 2008;134:1570-95.
    • (2008) Gastroenterology , vol.134 , pp. 1570-1595
    • Levin, B.1    Lieberman, D.A.2    McFarland, B.3    Andrews, K.S.4    Brooks, D.5    Bond, J.6
  • 5
    • 84986904365 scopus 로고    scopus 로고
    • Cancer Screening in the European Union. Report on the implementation of the Council Recommendation on cancer screening
    • cited 2012 Oct. 30
    • von Karsa L, Anttila A, Ronco G, et al. Cancer Screening in the European Union. Report on the implementation of the Council Recommendation on cancer screening. Lyon: International Agency for Research on Cancer. [cited 2012 Oct. 30]. Available from: http://ec.europa.eu/health/ph-determinants/genetics/documents/cancer-screening.pdf; 2008.
    • (2008) Lyon: International Agency for Research on Cancer
    • Von Karsa, L.1    Anttila, A.2    Ronco, G.3
  • 6
    • 84870948523 scopus 로고    scopus 로고
    • Principles, effectiveness and caveats in screening for cancer
    • Bretthauer M, Kalager M. Principles, effectiveness and caveats in screening for cancer. Br J Surg 2013;100:55-65.
    • (2013) Br J Surg , vol.100 , pp. 55-65
    • Bretthauer, M.1    Kalager, M.2
  • 7
    • 83255181794 scopus 로고    scopus 로고
    • 16. The fraction of cancer attributable to lifestyle and environmental factors in the UK in 2010
    • Parkin DM, Boyd L, Walker LC. 16. The fraction of cancer attributable to lifestyle and environmental factors in the UK in 2010. Br J Cancer 2011;105 Suppl 2:S77-81.
    • (2011) Br J Cancer , vol.105 , pp. S77-S81
    • Parkin, D.M.1    Boyd, L.2    Walker, L.C.3
  • 11
    • 67650089602 scopus 로고    scopus 로고
    • Prognosis and prognostic research: Application and impact of prognostic models in clinical practice
    • Moons KG, Altman DG, Vergouwe Y, Royston P. Prognosis and prognostic research: application and impact of prognostic models in clinical practice. BMJ 2009;338:b606.
    • (2009) BMJ , vol.338 , pp. b606
    • Moons, K.G.1    Altman, D.G.2    Vergouwe, Y.3    Royston, P.4
  • 12
    • 84865865320 scopus 로고    scopus 로고
    • Cancer risk models and preselection for screening
    • Stegeman I, Bossuyt PM. Cancer risk models and preselection for screening. Cancer Epidemiol 2012;36:461-9.
    • (2012) Cancer Epidemiol , vol.36 , pp. 461-469
    • Stegeman, I.1    Bossuyt, P.M.2
  • 15
    • 0034088378 scopus 로고    scopus 로고
    • Harvard report on cancer prevention volume 4: Harvard Cancer Risk Index. Risk Index Working Group, Harvard Center for Cancer Prevention
    • Colditz GA, Atwood KA, Emmons K, Monson RR, Willett WC, Trichopoulos D, et al. Harvard report on cancer prevention volume 4: Harvard Cancer Risk Index. Risk Index Working Group, Harvard Center for Cancer Prevention. Cancer Causes Control 2000;11:477-88.
    • (2000) Cancer Causes Control , vol.11 , pp. 477-488
    • Colditz, G.A.1    Atwood, K.A.2    Emmons, K.3    Monson, R.R.4    Willett, W.C.5    Trichopoulos, D.6
  • 17
    • 77957238771 scopus 로고    scopus 로고
    • 10-Year risk of colorectal cancer: Development and validation of a prediction model in middle-aged Japanese men
    • Ma E, Sasazuki S, Iwasaki M, Sawada N, Inoue M. 10-Year risk of colorectal cancer: development and validation of a prediction model in middle-aged Japanese men. Cancer Epidemiol 2011;34:534-41.
    • (2011) Cancer Epidemiol , vol.34 , pp. 534-541
    • Ma, E.1    Sasazuki, S.2    Iwasaki, M.3    Sawada, N.4    Inoue, M.5
  • 18
    • 70349492454 scopus 로고    scopus 로고
    • Cumulative risk of colon cancer up to age 70 years by risk factor status using data from the Nurses' Health Study
    • Wei EK, Colditz GA, Giovannucci EL, Fuchs CS, Rosner BA. Cumulative risk of colon cancer up to age 70 years by risk factor status using data from the Nurses' Health Study.AmJ Epidemiol 2009;170:863-72.
    • (2009) Amj Epidemiol , vol.170 , pp. 863-872
    • Wei, E.K.1    Colditz, G.A.2    Giovannucci, E.L.3    Fuchs, C.S.4    Rosner, B.A.5
  • 21
    • 84920172671 scopus 로고    scopus 로고
    • cited 2014 June 22
    • Sax Institute. The Baseline Questionnaires. [cited 2014 June 22]. Available from: https://www.saxinstitute.org.au/our-work/45-up-study/questionnaires/.
    • The Baseline Questionnaires
    • Sax Institute1
  • 22
    • 84873518746 scopus 로고    scopus 로고
    • Ascertaining invasive breast cancer cases; the validity of administrative and self-reported data sources in Australia
    • Kemp A, Preen DB, Saunders C, Holman CD, Bulsara M, Rogers K, et al. Ascertaining invasive breast cancer cases; the validity of administrative and self-reported data sources in Australia. BMC Med Res Methodol 2013;13:17.
    • (2013) BMC Med Res Methodol , vol.13 , pp. 17
    • Kemp, A.1    Preen, D.B.2    Saunders, C.3    Holman, C.D.4    Bulsara, M.5    Rogers, K.6
  • 23
    • 84870523847 scopus 로고    scopus 로고
    • cited 2012 Nov. 17
    • Centre for Health Record Linkage. [cited 2012 Nov. 17]. Available from: http://www.cherel.org.au/.
    • Centre for Health Record Linkage
  • 24
    • 84872257720 scopus 로고    scopus 로고
    • The Melbourne Collaborative Cohort Study
    • Giles GG, English DR. The Melbourne Collaborative Cohort Study. IARC Sci Publ 2002;156:69-70.
    • (2002) IARC Sci Publ , vol.156 , pp. 69-70
    • Giles, G.G.1    English, D.R.2
  • 27
    • 68249114452 scopus 로고    scopus 로고
    • Multiple imputation for missing data in epidemiological and clinical research: Potential and pitfalls
    • Sterne JA, White IR, Carlin JB, Spratt M, Royston P, Kenward MG, et al. Multiple imputation for missing data in epidemiological and clinical research: potential and pitfalls. BMJ 2009;338:b2393.
    • (2009) BMJ , vol.338 , pp. b2393
    • Sterne, J.A.1    White, I.R.2    Carlin, J.B.3    Spratt, M.4    Royston, P.5    Kenward, M.G.6
  • 28
    • 0033616909 scopus 로고    scopus 로고
    • Multiple imputation of missing blood pressure covariates in survival analysis
    • van Buuren S, Boshuizen HC, Knook DL. Multiple imputation of missing blood pressure covariates in survival analysis. Stat Med 1999;18:681-94.
    • (1999) Stat Med , vol.18 , pp. 681-694
    • Van Buuren, S.1    Boshuizen, H.C.2    Knook, D.L.3
  • 30
    • 34347407592 scopus 로고    scopus 로고
    • Multiple imputation of discrete and continuous data by fully conditional specification
    • van Buuren S. Multiple imputation of discrete and continuous data by fully conditional specification. Stat Methods Med Res 2007;16:219-42.
    • (2007) Stat Methods Med Res , vol.16 , pp. 219-242
    • Van Buuren, S.1
  • 31
    • 0032960273 scopus 로고    scopus 로고
    • Multiple imputation: A primer
    • Schafer JL. Multiple imputation: a primer. Stat Methods Med Res 1999;8:3-15.
    • (1999) Stat Methods Med Res , vol.8 , pp. 3-15
    • Schafer, J.L.1
  • 32
    • 34548451124 scopus 로고    scopus 로고
    • How many imputations are really needed? Some practical clarifications of multiple imputation theory
    • Graham JW, Olchowski AE, Gilreath TD. How many imputations are really needed? Some practical clarifications of multiple imputation theory. Prev Sci 2007;8:206-13.
    • (2007) Prev Sci , vol.8 , pp. 206-213
    • Graham, J.W.1    Olchowski, A.E.2    Gilreath, T.D.3
  • 33
    • 48249126832 scopus 로고    scopus 로고
    • How should variable selection be performed with multiply imputed data?
    • Wood AM, White IR, Royston P. How should variable selection be performed with multiply imputed data? Stat Med 2008;27:3227-46.
    • (2008) Stat Med , vol.27 , pp. 3227-3246
    • Wood, A.M.1    White, I.R.2    Royston, P.3
  • 34
    • 72749115252 scopus 로고    scopus 로고
    • Development and validation of a prediction model with missing predictor data: A practical approach
    • Vergouwe Y, Royston P, Moons KG, Altman DG. Development and validation of a prediction model with missing predictor data: a practical approach. J Clin Epidemiol 2010;63:205-14.
    • (2010) J Clin Epidemiol , vol.63 , pp. 205-214
    • Vergouwe, Y.1    Royston, P.2    Moons, K.G.3    Altman, D.G.4
  • 35
    • 0030069896 scopus 로고    scopus 로고
    • Multivariable prognostic models: Issues in developing models, evaluating assumptions and adequacy, and measuring and reducing errors
    • Harrell FE Jr, Lee KL, Mark DB. Multivariable prognostic models: issues in developing models, evaluating assumptions and adequacy, and measuring and reducing errors. Stat Med 1996;15:361-87.
    • (1996) Stat Med , vol.15 , pp. 361-387
    • Harrell, F.E.1    Lee, K.L.2    Mark, D.B.3
  • 36
    • 3242770671 scopus 로고    scopus 로고
    • Overall C as a measure of discrimination in survival analysis: Model specific population value and confidence interval estimation
    • Pencina MJ, D'Agostino RB. Overall C as a measure of discrimination in survival analysis: model specific population value and confidence interval estimation. Stat Med 2004;23:2109-23.
    • (2004) Stat Med , vol.23 , pp. 2109-2123
    • Pencina, M.J.1    D'Agostino, R.B.2
  • 37
    • 38849091997 scopus 로고    scopus 로고
    • Evaluating the added predictive ability of a new marker: From area under the ROC curve to reclassification and beyond
    • Pencina MJ, D'Agostino RB Sr, D'Agostino RB Jr, Vasan RS. Evaluating the added predictive ability of a new marker: from area under the ROC curve to reclassification and beyond. Stat Med 2008;27:157-72.
    • (2008) Stat Med , vol.27 , pp. 157-172
    • Pencina, M.J.1    D'Agostino, R.B.2    D'Agostino, R.B.3    Vasan, R.S.4
  • 38
    • 78649477601 scopus 로고    scopus 로고
    • Extensions of net reclassification improvement calculations to measure usefulness of new biomarkers
    • Pencina MJ, D'Agostino RB Sr, Steyerberg EW. Extensions of net reclassification improvement calculations to measure usefulness of new biomarkers. Stat Med 2011;30:11-21.
    • (2011) Stat Med , vol.30 , pp. 11-21
    • Pencina, M.J.1    D'Agostino, R.B.2    Steyerberg, E.W.3
  • 40
    • 11344274987 scopus 로고    scopus 로고
    • Statistics review 13: Receiver operating characteristic curves
    • Bewick V, Cheek L, Ball J. Statistics review 13: receiver operating characteristic curves. Crit Care 2004;8:508-12.
    • (2004) Crit Care , vol.8 , pp. 508-512
    • Bewick, V.1    Cheek, L.2    Ball, J.3
  • 41
    • 16244366026 scopus 로고
    • Index for rating diagnostic tests
    • Youden WJ. Index for rating diagnostic tests. Cancer 1950;3:32-5.
    • (1950) Cancer , vol.3 , pp. 32-35
    • Youden, W.J.1
  • 43
    • 79961135005 scopus 로고    scopus 로고
    • Vienna, Austria: R Foundation for Statistical Computing
    • R Development Core Team. R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing, ISBN 3-900051-07-0; 2011. Available from: http://www.R-project.org/
    • (2011) R: A Language and Environment for Statistical Computing
  • 44
    • 84864278884 scopus 로고    scopus 로고
    • Diabetes mellitus and the incidence of colorectal cancer: An updated systematic review and meta-analysis
    • Deng L, Gui Z, Zhao L, Wang J, Shen L. Diabetes mellitus and the incidence of colorectal cancer: an updated systematic review and meta-analysis. Dig Dis Sci 2012;57:1576-85.
    • (2012) Dig Dis Sci , vol.57 , pp. 1576-1585
    • Deng, L.1    Gui, Z.2    Zhao, L.3    Wang, J.4    Shen, L.5
  • 45
    • 84871666335 scopus 로고    scopus 로고
    • Effect of flexible sigmoidoscopy-based screening on incidence and mortality of colorectal cancer: A systematic review and meta-analysis of randomized controlled trials
    • Elmunzer BJ, Hayward RA, Schoenfeld PS, Saini SD, Deshpande A, Waljee AK. Effect of flexible sigmoidoscopy-based screening on incidence and mortality of colorectal cancer: a systematic review and meta-analysis of randomized controlled trials. PLoS Med 2012;9:e1001352.
    • (2012) PLoS Med , vol.9
    • Elmunzer, B.J.1    Hayward, R.A.2    Schoenfeld, P.S.3    Saini, S.D.4    Deshpande, A.5    Waljee, A.K.6
  • 47
    • 84920178505 scopus 로고    scopus 로고
    • Colorectal cancer screening and subsequent incidence of colorectal cancer: Results from the 45 and Up Study
    • accepted for publication
    • Steffen A, Weber M, Roder D, Banks E. Colorectal cancer screening and subsequent incidence of colorectal cancer: results from the 45 and Up Study. Medical Journal of Australia (accepted for publication).
    • Medical Journal of Australia
    • Steffen, A.1    Weber, M.2    Roder, D.3    Banks, E.4
  • 48
    • 38749137358 scopus 로고    scopus 로고
    • Statistical evaluation of prognostic versus diagnostic models: Beyond the ROC curve
    • Cook NR. Statistical evaluation of prognostic versus diagnostic models: beyond the ROC curve. Clin Chem 2008;54:17-23.
    • (2008) Clin Chem , vol.54 , pp. 17-23
    • Cook, N.R.1
  • 49
    • 59949102664 scopus 로고    scopus 로고
    • Validation of a colorectal cancer risk prediction model among white patients age 50 years and older
    • Park Y, Freedman AN, Gail MH, Pee D, Hollenbeck A, Schatzkin A, et al. Validation of a colorectal cancer risk prediction model among white patients age 50 years and older. J Clin Oncol 2009;27:694-8.
    • (2009) J Clin Oncol , vol.27 , pp. 694-698
    • Park, Y.1    Freedman, A.N.2    Gail, M.H.3    Pee, D.4    Hollenbeck, A.5    Schatzkin, A.6
  • 50
    • 84860159431 scopus 로고    scopus 로고
    • Risk prediction models: II. External validation, model updating, and impact assessment
    • Moons KG, Kengne AP, Grobbee DE, Royston P, Vergouwe Y, Altman DG, et al. Risk prediction models: II. External validation, model updating, and impact assessment. Heart 2012;98:691-8.
    • (2012) Heart , vol.98 , pp. 691-698
    • Moons, K.G.1    Kengne, A.P.2    Grobbee, D.E.3    Royston, P.4    Vergouwe, Y.5    Altman, D.G.6
  • 51
    • 27544436222 scopus 로고    scopus 로고
    • Mammographic breast density and the Gail model for breast cancer risk prediction in a screening population
    • Tice JA, Cummings SR, Ziv E, Kerlikowske K. Mammographic breast density and the Gail model for breast cancer risk prediction in a screening population. Breast Cancer Res Treat 2005;94:115-22.
    • (2005) Breast Cancer Res Treat , vol.94 , pp. 115-122
    • Tice, J.A.1    Cummings, S.R.2    Ziv, E.3    Kerlikowske, K.4
  • 52
    • 0035104671 scopus 로고    scopus 로고
    • The effectiveness of the Gail model in estimating risk for development of breast cancer in women under 40 years of age
    • MacKarem G, Roche CA, Hughes KS. The effectiveness of the Gail model in estimating risk for development of breast cancer in women under 40 years of age. Breast J 2001;7:34-9.
    • (2001) Breast J , vol.7 , pp. 34-39
    • MacKarem, G.1    Roche, C.A.2    Hughes, K.S.3
  • 53
    • 33748679482 scopus 로고    scopus 로고
    • Projecting absolute invasive breast cancer risk in white women with a model that includes mammographic density
    • Chen J, Pee D, Ayyagari R, Graubard B, Schairer C, Byrne C, et al. Projecting absolute invasive breast cancer risk in white women with a model that includes mammographic density. J Natl Cancer Inst 2006;98:1215-26.
    • (2006) J Natl Cancer Inst , vol.98 , pp. 1215-1226
    • Chen, J.1    Pee, D.2    Ayyagari, R.3    Graubard, B.4    Schairer, C.5    Byrne, C.6
  • 54
    • 47649099448 scopus 로고    scopus 로고
    • Discriminatory accuracy from single-nucleotide polymorphisms in models to predict breast cancer risk
    • Gail MH. Discriminatory accuracy from single-nucleotide polymorphisms in models to predict breast cancer risk. J Natl Cancer Inst 2008;100:1037-41.
    • (2008) J Natl Cancer Inst , vol.100 , pp. 1037-1041
    • Gail, M.H.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.