-
1
-
-
84893288242
-
A reliable effective terascale linear learning system
-
abs/1110.4198
-
Agarwal, A., Chapelle, O., Dudfk, M., and Langford, J. A reliable effective terascale linear learning system. CoRR, abs/1110.4198, 2011.
-
(2011)
CoRR
-
-
Agarwal, A.1
Chapelle, O.2
Dudfk, M.3
Langford, J.4
-
2
-
-
0037403111
-
Mirror descent and nonlinear projected sub gradient methods for convex optimization
-
Beck, A. and Teboulle, M. Mirror descent and nonlinear projected sub gradient methods for convex optimization. Oper. Res. Lett., 31(3): 167-175, 2003.
-
(2003)
Oper. Res. Lett.
, vol.31
, Issue.3
, pp. 167-175
-
-
Beck, A.1
Teboulle, M.2
-
4
-
-
80051762104
-
Distributed optimization and statistical learning via the alternating direction method of multipliers
-
Boyd, S.P., Parikh, N., Chu, E., Peleato, B. and Eckstein, J. Distributed optimization and statistical learning via the alternating direction method of multipliers. Foundations and Trends in Machine Learning, 3(1): 1-122, 2011.
-
(2011)
Foundations and Trends in Machine Learning
, vol.3
, Issue.1
, pp. 1-122
-
-
Boyd, S.P.1
Parikh, N.2
Chu, E.3
Peleato, B.4
Eckstein, J.5
-
5
-
-
85162498265
-
Better mini-batch algorithms via accelerated gradient methods
-
Cotter, A., Shamir, O., Srebro, N., and Sridharan, K. Better mini-batch algorithms via accelerated gradient methods. In NIPS, 2011.
-
(2011)
NIPS
-
-
Cotter, A.1
Shamir, O.2
Srebro, N.3
Sridharan, K.4
-
6
-
-
84857527621
-
Optimal distributed online prediction using mini- batches
-
Dekel, O., Gilad-Bachrach, R., Shamir, O., and Xiao, L. Optimal distributed online prediction using mini- batches. Journal of Machine Learning Research, 13: 165-202, 2012.
-
(2012)
Journal of Machine Learning Research
, vol.13
, pp. 165-202
-
-
Dekel, O.1
Gilad-Bachrach, R.2
Shamir, O.3
Xiao, L.4
-
7
-
-
84878490420
-
On the global and linear convergence of the generalized alternating direction method of multipliers
-
Deng, W. and Yin, W. On the global and linear convergence of the generalized alternating direction method of multipliers. Technical report, Rice University Technical Report TR12-14, 2012.
-
(2012)
Technical Report, Rice University Technical Report TR12-14
-
-
Deng, W.1
Yin, W.2
-
8
-
-
84857708133
-
Dual averaging for distributed optimization: Convergence analysis and network scaling
-
Duchi, J., Agarwal, A., and Wainwright, M. Dual averaging for distributed optimization: Convergence analysis and network scaling. IEEE Trans. Automat. Contr., 57(3): 592-606, 2012.
-
(2012)
IEEE Trans. Automat. Contr.
, vol.57
, Issue.3
, pp. 592-606
-
-
Duchi, J.1
Agarwal, A.2
Wainwright, M.3
-
9
-
-
85013592906
-
On the linear convergence of the alternating direction method of multipliers
-
abs/1208.3922
-
Hong, M. and Luo, Z.-Q. On the linear convergence of the alternating direction method of multipliers. CoRR, abs/1208.3922, 2012.
-
(2012)
CoRR
-
-
Hong, M.1
Luo, Z.-Q.2
-
10
-
-
84919886582
-
A parallel SGD method with strong convergence
-
abs/1311.0636
-
Mahajan, D., Keerthy, S., Sundararajan, S., and Bottou, L. A parallel sgd method with strong convergence. CoRR, abs/1311.0636, 2013.
-
(2013)
CoRR
-
-
Mahajan, D.1
Keerthy, S.2
Sundararajan, S.3
Bottou, L.4
-
11
-
-
4043065592
-
On Cesaro's convergence of the gradient descent method for finding saddle points of convex-concave functions
-
Nemirovski, A. and Yudin, D. On cesaro's convergence of the gradient descent method for finding saddle points of convex-concave functions. Doklady Akademii Nauk SSSR, 239(4), 1978.
-
(1978)
Doklady Akademii Nauk SSSR
, vol.239
, Issue.4
-
-
Nemirovski, A.1
Yudin, D.2
-
13
-
-
84867120686
-
Making gradient descent optimal for strongly convex stochastic optimization
-
Rakhlin, A., Shamir, O., and Sridharan, K. Making gradient descent optimal for strongly convex stochastic optimization. In ICML, 2012.
-
(2012)
ICML
-
-
Rakhlin, A.1
Shamir, O.2
Sridharan, K.3
-
14
-
-
85162467517
-
Hog wild: A lock-free approach to parallelizing stochastic gradient descent
-
Recht, B., Re, C., Wright, S. and Niu, F. Hog wild: A lock-free approach to parallelizing stochastic gradient descent. In NIPS, 2011.
-
(2011)
NIPS
-
-
Recht, B.1
Re, C.2
Wright, S.3
Niu, F.4
-
15
-
-
84899031876
-
Distributed coordinate descent method for learning with big data
-
abs/1310.2059
-
Richtarik, P. and Takac, M. Distributed coordinate descent method for learning with big data. CoRR, abs/1310.2059, 2013.
-
(2013)
CoRR
-
-
Richtarik, P.1
Takac, M.2
-
16
-
-
84875134236
-
Stochastic dual coordinate ascent methods for regularized loss
-
Shalev-Shwartz, S. and Zhang, T. Stochastic dual coordinate ascent methods for regularized loss. Journal of Machine Learning Research, 14(1):567-599, 2013.
-
(2013)
Journal of Machine Learning Research
, vol.14
, Issue.1
, pp. 567-599
-
-
Shalev-Shwartz, S.1
Zhang, T.2
-
17
-
-
84898064829
-
Stochastic convex optimization
-
Shalev-Shwartz, S., Shamir, O., Srebro, N., and Sridharan, K. Stochastic convex optimization. In COLT, 2009.
-
(2009)
COLT
-
-
Shalev-Shwartz, S.1
Shamir, O.2
Srebro, N.3
Sridharan, K.4
-
18
-
-
84858785386
-
Fast rates for regularized objectives
-
Sridharan, K., Shalev-Shwartz, S., and Srebro, N. Fast rates for regularized objectives. In Advances in Neural Information Processing Systems, pp. 1545-1552, 2008.
-
(2008)
Advances in Neural Information Processing Systems
, pp. 1545-1552
-
-
Sridharan, K.1
Shalev-Shwartz, S.2
Srebro, N.3
-
19
-
-
84864315555
-
User-friendly tail bounds for sums of random matrices
-
Tropp, J. User-friendly tail bounds for sums of random matrices. Foundations of Computational Mathematics, 12(4):389-434, 2012.
-
(2012)
Foundations of Computational Mathematics
, vol.12
, Issue.4
, pp. 389-434
-
-
Tropp, J.1
-
20
-
-
84898970556
-
Trading computation for communication: Distributed stochastic dual coordinate ascent
-
Yang, T. Trading computation for communication: Distributed stochastic dual coordinate ascent. In NIPS, 2013.
-
(2013)
NIPS
-
-
Yang, T.1
-
21
-
-
84890032023
-
Communication- efficient algorithms for statistical optimization
-
Zhang, Y., Duchi, J., and Wainwright, M. Communication- efficient algorithms for statistical optimization. Journal of Machine Learning Research, 14:3321-3363, 2013.
-
(2013)
Journal of Machine Learning Research
, vol.14
, pp. 3321-3363
-
-
Zhang, Y.1
Duchi, J.2
Wainwright, M.3
-
22
-
-
85161967549
-
Parallelized stochastic gradient descent
-
Zinkevich, M., Weimer, M., Smola, A., and Li, L. Parallelized stochastic gradient descent. In NIPS, pp. 2595- 2603, 2010.
-
(2010)
NIPS
, pp. 2595-2603
-
-
Zinkevich, M.1
Weimer, M.2
Smola, A.3
Li, L.4
|